(2)设.数列与其反数列的公共项组成的数列为 查看更多

 

题目列表(包括答案和解析)

(2007•浦东新区一模)由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求bn
(2)设cn=3n,数列{cn}与其反数列{dn}的公共项组成的数列为{tn}
(公共项tk=cp=dq,k、p、q为正整数).求数列{tn}前10项和S10
(3)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的范围.

查看答案和解析>>

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数数学公式确定数列{an}的反数列为{bn},求bn
(2)设cn=3n,数列{cn}与其反数列{dn}的公共项组成的数列为{tn}
(公共项tk=cp=dq,k、p、q为正整数).求数列{tn}前10项和S10
(3)对(1)中{bn},不等式数学公式对任意的正整数n恒成立,求实数a的范围.

查看答案和解析>>

由y=f(x)确定数列{an}:an=f(n).若y=f(x)的反函数y=f-1(x)能确定数列{bn}:bn=f-1(n),则称{bn}是{an}的“反数列”.
(1)若f(x)=2
x
确定的数列{an}的反数列为{bn},求bn
(2)对(1)中{bn},记Tn=
1
bn+1
+
1
bn+2
+…+
1
b2n
,若Tn
1
2
loga(1-2a)
对n∈N*恒成立,求实数a的取值范围.
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)
(λ为正整数),若数列{cn}的反数列为{dn},且{cn}与{dn}的公共项组成的数列为{tn}(公共项tk=cp=dq,其中k,p,q为正整数),求数列{tn}前n项和Sn

查看答案和解析>>

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ为正整数)
,若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn

查看答案和解析>>

(08年惠州一中模拟理) 由函数确定数列,若函数的反函数 能确定数列,则称数列是数列的“反数列”。

(1)已知函数的反函数为,则由函数确定的数列的反数列为,求的通项公式;不等式对任意的正整数恒成立,求实数的范围;

(2)设函数确定的数列为的反数列为的公共项组成的数列为;求数列项和

查看答案和解析>>


同步练习册答案