题目列表(包括答案和解析)
(09年湖北黄冈联考理)(14分)设M是由满足下列条件的函数
构成的集合:“①方程
有实数根;②函数
的导数
满足
”
(1)判断函数
是否是集合M中的元素,并说明理由;
(2)若集合M中的元素具有下面的性质:“若
的定义域为D,则对于任意
,都存在
,使得等式
成立”
试用这一性质证明:方程
只有一个实数根;
(3)设
是方程
的实数根,求证:对于
定义域中的任意的
,当
且
时,![]()
(Ⅰ)判断函数f(x)=
+
是否是集合M中的元素,并说明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]
D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.
(本小题满分13分)
设M是由满足下列条件的函数
构成的集合:“①方程
有实数根;②函数
的导数
满足
”.
(1)判断函数
是否是集合M中的元素,并说明理由;
(2)若集合M中的元素具有下面的性质:“若
的定义域为D,则对于任意
,都存在
,使得等式
成立”,
试用这一性质证明:方程
只有一个实数根;
(3)设
是方程
的实
数根,求证:对于
定义域中的任意的
,当
且
时,
.
(本小题满分13分)
设M是由满足下列条件的函数
构成的集合:“①方程
有实数根;②函数
的导数
满足
”.
(1)判断函数
是否是集合M中的元素,并说明理由;
(2)若集合M中的元素具有下面的性质:“若
的定义域为D,则对于任意
,都存在
,使得等式
成立”,试用这一性质证明:方程
只有一个实数根;
(3)设
是方程
的实数根,求证:对于
定义域中的任意的
,当
且
时,
.
(Ⅰ)判断函数f(x)=
是否是集合M中的元素,并说明理由;
(Ⅱ )集合M中的元素f(x)具有下面的性质:“若f(x)的定义域为D,则对于任意[m,n]
D,都存在x0∈ [m,n],使得等式f(n)-f(m)=(n-m)
(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当
,且
时,
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com