题目列表(包括答案和解析)
[选做题]
A.选修4—1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.![]()
|
选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分
22.(本小题满分10分)选修4—1几何证明选讲
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。
(I)求证:DE是⊙O的切线;
(II)若
的值.
![]()
23.(本小题满分10分)选修4—2坐标系与参数方程
设直角坐标系原点与极坐标极点重合, x轴正半轴与极轴重合,若已知曲线C的极坐标方程为
,点F1、F2为其左、右焦点,直线l的参数方程为![]()
(I)求直线l的普通方程和曲线C的直角坐标方程;
(II)求曲线C上的动点P到直线l的最大距离。
24.(本小题满分10分)选修4—5不等式选讲
对于任意的实数
恒成立,记实数M的最大值是m。
(1)求m的值;
(2)解不等式![]()
选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分
22.(本小题满分10分)选修4—1几何证明选讲
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。
(I)求证:DE是⊙O的切线;
(II)若
的值.
![]()
23.(本小题满分10分)选修4—2坐标系与参数方程
设直角坐标系原点与极坐标极点重合, x轴正半轴与极轴重合,若已知曲线C的极坐标方程为
,点F1、F2为其左、右焦点,直线l的参数方程为![]()
(I)求直线l的普通方程和曲线C的直角坐标方程;
(II)求曲线C上的动点P到直线l的最大距离。
24.(本小题满分10分)选修4—5不等式选讲
对于任意的实数
恒成立,记实数M的最大值是m。
(1)求m的值;
(2)解不等式![]()
[选做题]
A.选修4—1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.
![]()
B.选修4—2:矩阵与变换
二阶矩阵
对应的变换将点
与
分别变换成点
与
.求矩阵
;
C.选修4—4:坐标系与参数方程
若两条曲线的极坐标方程分别为=l与=2cos(θ+),它们相交于A,B两点,求线
段AB的长.
D.选修4—5:不等式选讲
求函数
的最大值.
|
(执信中学、中山纪念中学、深圳外语)三校联考 09.02
一.选择题:
二.填空题:9.1;
10.15;
11.


13.
;
14.
;
15.
.
三.解答题:
16.(1)
=
=
2分
=
=
4分
6分
(2)
=
=
=
=
9分
由
,得
10分
11分
当
, 即
时,
12分
17.(1)由已知,
的取值为
.
2分
,
,
,
8分

7
8
9
10





的分布列为:
9分
(2)
11分
12分
18.(1)由
.且
得
2分
,
4分
在
中,令
得
当
时,T
=
,
两式相减得
,
6分
.
8分
(2)
,
9分
,
, 10分
=2
=
,
13分
14分
19、(Ⅰ)在梯形
中,
,


四边形
是等腰梯形,
且

2分
又
平面
平面
,交线为
,
平面
4分
(Ⅱ)解法一、当
时,
平面
,
5分
在梯形
中,设
,连接
,则
6分
,而
,
7分
,
四边形
是平行四边形,
8分
又
平面
,
平面
平面
9分
解法二:当
时,
平面
,
由(Ⅰ)知,以点
为原点,
所在直线为坐标轴,建立空间直角坐标系, 5分
则
,
,
,
,
,
平面
,

平面

与
、
共面,
|