题目列表(包括答案和解析)
(本题满分14分)设
,方程
有唯一解,已知
,且![]()
(1)求数列
的通项公式;
(2)若
,求和
;
(3)问:是否存在最小整数
,使得对任意
,有
成立,若存在;求出
的值;若不存在,说明理由。
(本题满分14分)设
,方程
有唯一解,已知
,且![]()
(1)求数列
的通项公式;
(2)若
,求和
;
(3)问:是否存在最小整数
,使得对任意
,有
成立,若存在;求出
的值;若不存在,说明理由。
(本小题满分14分)
已知函数
对于任意
(
),都有式子
成立(其中
为常数).
(Ⅰ)求函数
的解析式;
(Ⅱ)利用函数
构造一个数列,方法如下:
对于给定的定义域中的
,令
,
,…,
,…
在上述构造过程中,如果
(
=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果
不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求
的取值范围;
(ⅱ)是否存在一个实数
,使得取定义域中的任一值作为
,都可用上述方法构造出一个无穷数列
?若存在,求出
的值;若不存在,请说明理由;
(ⅲ)当
时,若
,求数列
的通项公式.
(本小题满分14分)
已知定义域为
的函数
同时满足以下三个条件:
① 对任意的
,总有
≥0; ②
;
③若
且
,则有
成立,并且称
为“友谊函数”,
请解答下列各题:
(1)若已知
为“友谊函数”,求
的值;
(2)函数
在区间
上是否为“友谊函数”?并给出理由.
(3)已知
为“友谊函数”,且
,求证:![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com