当时..在上为减函数 8分 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=lnxgx)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]

(Ⅰ)求a、b的值; 

(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]

【解析】第一问解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

第二问,由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

 

查看答案和解析>>

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

已知函数

(1)若函数的图象经过P(3,4)点,求a的值;

(2)比较大小,并写出比较过程;

(3)若,求a的值.

【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数的图象经过P(3,4)点,所以,解得,因为,所以.

(2)问中,对底数a进行分类讨论,利用单调性求解得到。

(3)中,由知,.,指对数互化得到,,所以,解得所以, 或 .

解:⑴∵函数的图象经过,即.        … 2分

,所以.             ………… 4分

⑵当时,;

时,. ……………… 6分

因为,

时,上为增函数,∵,∴.

.当时,上为减函数,

,∴.即.      …………………… 8分

⑶由知,.所以,(或).

.∴,       … 10分

 或 ,所以, 或 .

 

查看答案和解析>>

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

(本题满分8分)探究函数的最小值,并确定相应的x的值,列表如下:

x

1

2

4

8

16

y

16.25

8.5

5

4

5

8.5

16.25

请观察表中y值随x值变化的特点,完成下列问题:

(Ⅰ)若,则    (请填写“>, =, <”号);若函数,(x>0)在区间(0,2)上递减,则在         上递增;

(Ⅱ)当x=       时,,(x>0)的最小值为        

(Ⅲ)试用定义证明,(x>0)在区间(0,2)上递减.

查看答案和解析>>


同步练习册答案