16.已知数列{an}满足 (1)求证:{an}为等比数列, (2)记为数列{bn}的前n项和.那么: ①当a=2时.求Tn, ②当时.是否存在正整数m.使得对于任意正整数n都有如果存在.求出m的值,如果不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

已知数列{an}满足递推关系式:an=
4an-1-2
an-1+1
(n≥2,n∈N),首项为a1

(1)若a1>a2,求a1的取值范围;
(2)记bn=
an-2
an-1
(n∈N*),1<a1<2,求证:数列{bn}
是等比数列;
(3)若an>an+1(n∈N*)恒成立,求a1的取值范围.

查看答案和解析>>

已知数列{an}满足:a1=
1
4
,a2=
3
4
,an+1=2an-an-1(n≥2,n∈N*),数列{bn}满足b1<0,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn
(1)求数列{an}的通项an
(2)求证:数列{bn-an}为等比数列.

查看答案和解析>>

已知数列{an}满足a1=
1
4
,2an+an-1=(-1)nanan-1(n≥2,n∈N*),an≠0

(1)求证:数列{
1
an
+(-1)n}
是等比数列,并求{an}的通项公式;
(2)设bn=an•sin
(2n-1)π
2
,数列{bn}的前n项和为Tn,求证:对任意的n∈N*,有Tn
2
3
成立.

查看答案和解析>>

已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2,n∈N*).
(1)求证:当n≥2时,{an+2an-1}和{an-3an-1}均为等比数列;
(2)求证:当k为奇数时,
1
ak
+
1
ak+1
4
3k+1

(3)求证:
1
a1
+
1
a2
+…+
1
an
1
2
(n∈N*).

查看答案和解析>>

已知数列{an}满足:a1=1,an+1=
an
2
+n-1,n为奇数
an-2n     ,n为偶数
,记bn=a2n(n∈N*),Sn为数列{bn}的前n项和.
(Ⅰ)证明数列{bn}为等比数列,并求其通项公式;
(Ⅱ)若对任意n∈N*且n≥2,不等式λ≥1+sn-1恒成立,求实数λ的取值范围;
(Ⅲ)令cn=
(n+1)(
5
11
)n
bn
,证明:cn
1010
119
(n∈N*).

查看答案和解析>>


同步练习册答案