解:(1)已知EFAB,那么翻折后.显然有PEEF,又PEAE,从而PE面ABC,即PE为四棱锥的高. 四棱锥的底面积 而△BEF与△BDC相似.那么 = . = 则 =63=9 故四棱锥的体积V(x)=Sh=9 = (0<x<3) = 3-x2(0<x<3), 令V’(x)=0得x=6 当x∈>0,V(x)单调递增,x∈(6.3)时V’单调递减, 因此x=6时. Vmax= V(6)=12 (3)过F作AC的平行线交AE于点G.连结FG.PG.则EG=6.EF=.GF=PF=.PG=. 查看更多

 

题目列表(包括答案和解析)

(1)已知不等式ax2+bx+c>0的解集为{x|α<x<β,α∈R+},求不等式cx2+bx+a<0的解集.

(2)已知集合A={x|2x2+7x-15<0},B={x|x2+ax+b≤0},满足A∩B=,A∪B={x|-5<x≤2},求实数a,b的值.

查看答案和解析>>

学生李明解以下问题已知α,β,?均为锐角,且sinα+sin?=sinβ,cosβ+cos?=cosα求α-β的值
其解法如下:由已知sinα-sinβ=-sin?,cosα-cosβ=cos?,两式平方相加得2-2cos(α-β)=1
cos(α-β)=
1
2
又α,β均锐角
-
π
2
<α-β<
π
2

α-β=±
π
3

请判断上述解答是否正确?若不正确请予以指正.

查看答案和解析>>

24、给定集合An={1,2,3,…,n},映射f:An→An,同时满足:
①当i,j∈An,i≠j时,f(i)≠f(j);
②任取m∈An,若m≥2,则有m∈{f(1),f(2),…,f(m)}.
则称映射f:An→An是一个“优映射”.
例如:用表1表示的映射f:A3→A3是一个“优映射”.
表1   表2
1 2 3   1 2 3 4 5
2 3 1            
已知表2表示的映射f:A5-A5是一个“优映射”,且方程f(i)=i的解恰有3个,则这样的“优映射”的个数是
4

查看答案和解析>>

1已知函数f(x)=ax+b
1+x2
(x≥0)
g(x)=2
b(1+x2)
,a,b∈R,且g(0)=2,f(
3
)=2-
3

(Ⅰ)求f(x)、g(x)的解析式;
(Ⅱ)h(x)为定义在R上的奇函数,且满足下列性质:①h(x+2)=-h(x)对一切实数x恒成立;②当0≤x≤1时h(x)=
1
2
[-f(x)+log2g(x)]

(ⅰ)求当-1≤x<3时,函数h(x)的解析式;
(ⅱ)求方程h(x)=-
1
2
在区间[0,2012]上的解的个数.

查看答案和解析>>

下列命题中,正确的命题序号为

①方程组
2x+y=0
x-y=3
的解集为{1,2}
②集合C={
6
3-x
∈z|x∈N*
}={1,2,4,5,6,9}
③f(x)=
x-3
+
2-x
是函数
④若定义域为[a-1,2a]的函数f(x)=ax2+bx+3a+b是偶函数,则f(0)=1
⑤已知集合A={1,2,3},B={2,3,4,5},则满足S⊆A且S∩≠∅,B的集合S的个数为10个
⑥函数y=
2
x
在定义域内是减函数.

查看答案和解析>>


同步练习册答案