(C)3 (D)4 查看更多

 

题目列表(包括答案和解析)

(x+4的展开式中系数为有理数的项有(    )

A.1项                B.2项              C.3项                D.4项

查看答案和解析>>

(1)y=tanx在定义域上是增函数;
(2)y=sinx在第一、第四象限是增函数;
(3)y=sinx与y=cosx在第二象限都是减函数;
(4)y=sinx在x∈[-
π
2
π
2
]
上是增函数,上述四个命题中,正确的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

(1)选修4-2:矩阵与变换
已知矩阵M=(
2a
2b
)的两^E值分别为λ1=-1和λ2=4.
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
x=sinα
y=2cos2α-2

(a为餓),曲线D的鍵标方程为ρsin(θ-
π
4
)=-
3
2
2

(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的结论求函数y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(3,0),求矩阵M.
(2)选修4-4:坐标系与参数方程
过点M(3,4),倾斜角为
π
6
的直线l与圆C:
x=2+5cosθ
y=1+5sinθ
(θ为参数)相交于A、B两点,试确定|MA|•|MB|的值.
(3)选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

(理)某娱乐中心有如下摸奖活动:拿8个白球和8个黑球放在一盒中,规定:凡摸奖者,每人每次交费1元,每次从盒中摸出5个球,中奖情况为:摸出5个白球中20元,摸出4个白球1个黑球中2元,摸出3个白球2个黑球中价值为0.5元的纪念品1件,其他情况无任何奖励.若有1560人次摸奖,不计其他支出,用概率估计该中心收入钱数为(  )
A、120元B、480元C、980元D、148元

查看答案和解析>>

 

一、选择题:本大题共12个小题,每小题5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空题:本大题共4个小题,每小题4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.

 

17.解:(Ⅰ)∵l1∥l2

,????????????????????????? 3分

.??????????????????????? 6分

(Ⅱ)∵

,∴,当且仅当时取"=".??? 8分

,∴,???????????? 10分

,当且仅当时取"=".

故△ABC面积取最大值为.?????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率;??????????? 1分

②三次取球中有2次出现最大数字3的概率;????? 3分

③三次取球中仅有1次出现最大数字3的概率.????? 5分

∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分

(Ⅱ)在ξ=k时, 利用(Ⅰ)的原理可知:

(k=1、2、3、4).?? 8分

则ξ的概率分布列为:

ξ

1

2

3

4

P

??????????????????????????????????? 10分

∴ξ的数学期望Eξ=1×+2×+3×+4× = .????????? 12分

 

19.(Ⅰ)证明:∵四边形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等边三角形,设O是AA1的中点,连接BO,则BO⊥AA1 2分

∵侧面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面积为,知C到AA1的距离为,∴△AA1C1是等边三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB两两垂直,以O为原点,建立如图空间直角坐标系,则.则.??????????????????????????? 5分

是平面ABC的一个法向量,

,则.设A1到平面ABC的距离为d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一个法向量是,又平面ACC1的一个法向量.    9分

.????????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ),对称轴方程为,故函数在[0,1]上为增函数,∴.???????????????????????? 2分

时,.?????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????? 4分

,∴数列是以为首项,为公比的等比数列.

,∴.?????????????? 6分

(Ⅱ)∵,∴

???????????????? 7分

可知:当时,;当时,;当时,

????????????????????? 10分

可知存在正整数或6,使得对于任意的正整数n,都有成立.??? 12分

 

21.解:(Ⅰ)设

.∵

,∴,∴.?????????????????? 2分

则N(c,0),M(0,c),所以

,则

∴椭圆的方程为.?????????????????????? 4分

(Ⅱ)∵圆O与直线l相切,则,即,????????? 5分

消去y得

∵直线l与椭圆交于两个不同点,设

,?????????????????? 7分

.????? 8分

.??????????? 9分

(或).

,则

,则

时单调递增,????????????????????? 11分

∴S关于μ在区间单调递增,

.???????????????????????????? 12分

(或

∴S关于u在区间单调递增,???????????????????? 11分

.)???????????????? 12分

 

22.解:(Ⅰ)因为,则,   1分

时,;当时,

上单调递增;在上单调递减,

∴函数处取得极大值.???????????????????? 2分

∵函数在区间(其中)上存在极值,

解得.??????????????????????? 3分

(Ⅱ)不等式,即为,???????????? 4分

,∴,?? 5分

,则,∵,∴上递增,

,从而,故上也单调递增,

.??????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分

,??????????????? 9分

………

,??????????????????????? 10分

叠加得:

.???????????????????? 12分

.???????????????????? 14


同步练习册答案