所以.不论为何值.总有平面BEF⊥平面ABC----------6分(2)解:作BQ∥CD.则BQ⊥平面ABC.所以.BQ⊥BC.BQ⊥BE.又BQ与CD.EF共面.所以.平面BEF∩平面BCD=BQ.所以.∠CBE为平面BEF与平面BCD所成的二面角的平面角为60°. 查看更多

 

题目列表(包括答案和解析)

已知△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1)

求证:不论λ为何值,总有平面BEF⊥平面ABC.

查看答案和解析>>

精英家教网(理)已知ABCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1).
(1)求证不论λ为何值,总有平面BEF⊥平面ABC;
(2)若平面BEF与平面BCD所成的二面角的大小为60°,求λ的值.

查看答案和解析>>

如图所示,已知△BCD中,∠BCD=90°,BC=CD=a,AB⊥平面BCD,AB=
3a
,E,F分别是AC,AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1).
(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时,平面BEF⊥平面ACD?
(3)在(2)成立时,求BD与平面BEF所成角的正弦值.

查看答案和解析>>

如图,在△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1)

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)若BE⊥AC,求证:平面BEF⊥平面ACD.

查看答案和解析>>

精英家教网已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1).
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?

查看答案和解析>>


同步练习册答案