21.为奇函数.∴f(-x)=-ax3-2bx2-cx+4d=-f(x)=-ax3+2bx2-cx-4d,恒成立.可得 b=d=0,-----------------------------------------------------------------------------1 查看更多

 

题目列表(包括答案和解析)

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函f(x)的一个上界.
已知函数f(x)=1+a(
1
2
)
x
+(
1
4
)
x
,g(x)=log
1
2
1-ax
x-1

(1)若函数g(x)为奇函数,求实数a的值;
(2)在(1)的条件下,求函数g(x),在区间[
5
3
,3]上的所有上界构成的集合;
(3)若函数g(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

已知三次函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)为奇函数,且在点(1,f(1))的切线方程为y=3x-2
(1)求函数f(x)的表达式.
(2)已知数列{an}的各项都是正数,且对于?n∈N*,都有(
n
i=1
ai
2=
n
i=1
f(ai)
,求数列{an}的首项a1和通项公式.
(3)在(2)的条件下,若数列{bn}满足bn=4n-m•2 an+1(m∈R,n∈N*),求数列{bn}的最小值.

查看答案和解析>>

已知g(x)为奇函数,设f(x)=
(x+1)2+g(x)x2+1
的最大值与最小值之和为
2
2

查看答案和解析>>

已知函数f(x)=a-
12x+1
,(x∈R).
(Ⅰ)求证:不论a为何实数f(x)在(-∞,+∞)上为增函数;
(Ⅱ)若f(x)为奇函数,求a的值;
(Ⅲ)在(Ⅱ)的条件下,求f(x)在区间[1,5)上的最小值.

查看答案和解析>>

设f(x)(x∈R)是以3为周期的周期函数,且为奇函数,又f(1)>1,f(2)=a,那么 a的取值范围是
a<-1
a<-1

查看答案和解析>>


同步练习册答案