(2)探究:与的关系. 查看更多

 

题目列表(包括答案和解析)

 

1.探究新知

如图1,已知ΔABC与ΔABD的面积相等,试判断AB与CD的位置关系,并说明理由;[来源:

2.结论应用:

如图2,过点M,N在反比例函数的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F。试证明MN//EF。

 

查看答案和解析>>

 

1.探究新知

如图1,已知ΔABC与ΔABD的面积相等,试判断AB与CD的位置关系,并说明理由;[来源:

2.结论应用:

如图2,过点M,N在反比例函数的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F。试证明MN//EF。

 

查看答案和解析>>

探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF。
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°,
∵∠1=∠2,
∴∠1+∠3=45°,
即∠GAF=∠_________,
又AG=AE,AF=AF,
∴△GAF≌_______,
∴_________=EF,
故DE+BF=EF;
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB,试猜想DE,BF,EF之间有何数量关系,并证明你的猜想;
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF,请直接写出你的猜想(不必说明理由)。

查看答案和解析>>

探究一:如图1,正△ABC中,E为AB边上任一点,△CDE为正三角形,连结AD,猜想AD与BC的位置关系,并说明理由;
探究二:如图2,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由。

查看答案和解析>>

问题探究:
(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系? 举例说明。
(2) 如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系? 举例说明。

查看答案和解析>>


同步练习册答案