精英家教网 > 高中数学 > 题目详情
如图所示,在四边形ABCD 中,E ,F 分别为AD ,BC 的中点,则=
A.
B.
C.
D.
相关习题

科目:高中数学 来源:同步题 题型:证明题

如图所示,在四边形ABCD 中,E ,F 分别为AD ,BC 的中点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四边形ABCD中,E、F分别为AD、BC的中点,试证:=).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)求二面角A-BC-P的大小;
(4)若E为BC边的中点,能否在棱PC上找一点F,使得平面DEF⊥平面ABCD?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省、二中高三上学期期末联考文科数学卷(解析版) 题型:解答题

如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若EF分别为PCBD的中点.

(1)求证:平面PAD

(2)求证:平面PDC平面PAD

(3)求四棱锥的体积.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若EF分别为PCBD的中点.

(1)求证:平面PAD
(2)求证:平面PDC平面PAD
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:证明题

如图所示,在四棱锥S-ABCD中,底面ABCD为平行四边形,E,F分别为AB,SC的中点,求证:EF∥平面SAD。

查看答案和解析>>

科目:高中数学 来源:2013年高考数学备考复习卷B5:点、直线、平面之间的位置关系(解析版) 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)求二面角A-BC-P的大小;
(4)若E为BC边的中点,能否在棱PC上找一点F,使得平面DEF⊥平面ABCD?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH上或其内部运动,且使MN⊥AC.

对于下列命题:①点M可以与点H重合;②点M可以与点F重合;③点M可以在线段FH上;④点M可以与点E重合.其中真命题的序号是________(把真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:2014年高考数学文复习二轮作业手册新课标·通用版限时集12讲练习卷(解析版) 题型:填空题

如图所示在正四棱柱ABCDA1B1C1D1EFGH分别是CC1C1D1D1DDC的中点NBC的中点M在四边形EFGH上或其内部运动且使MN⊥AC.

对于下列命题:M可以与点H重合;M可以与点F重合;M可以在线段FH上;M可以与点E重合.其中真命题的序号是________(把真命题的序号都填上)

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省永州市蓝山二中等三校高三第四次联考数学试卷(理科)(解析版) 题型:解答题

如图所示,在直角梯形ABCD中,∠A=90°,∠C=45°,AB=2,AD=1,E是AB中点,F是DC上的点,且EF∥AD,现以EF为折痕将四边形AEFD向上折起,使平面AEFD垂直平面EBCF,连AC,DC,BA,BD,BF,

(1)求证:CB⊥平面DFB;
(2)求二面角B-AC-D的余弦值.

查看答案和解析>>


同步练习册答案