精英家教网 > 高中数学 > 题目详情
曲线y=x(x2+1)切线斜率的取值范围是(  )
A.(1,+∞)B.[4,+∞)C.[1,+∞)D.(-∞,+∞)
相关习题

科目:高中数学 来源: 题型:

3、曲线y=x(x2+1)切线斜率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=x(x2+1)切线斜率的取值范围是(  )
A.(1,+∞)B.[4,+∞)C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

曲线y=x(x2+1)切线斜率的取值范围是


  1. A.
    (1,+∞)
  2. B.
    [4,+∞)
  3. C.
    [1,+∞)
  4. D.
    (-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ex-a(x+1).
(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值;
(2)设g(x)=f(x)+
a
ex
,A(x1y1),B(x2y2)(x1x2)
是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)是否存在正整数a.使得1n+3n+…+(2n-1)n
e
e-1
(an)n
对一切正整数n都成立?若存在,求a的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ex-a(x+1).
(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值.
(2)设g(x)=f(x)+
a
ex
,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)求证:1n+3n+…+(2n-1)n
e
e-1
•(2n)n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=ex-t(x+1).
(1)若f(x)≥0对一切正实数x恒成立,求t的取值范围;
(2)设,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的t≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)求证:(n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ex-t(x+1).
(1)若f(x)≥0对一切正实数x恒成立,求t的取值范围;
(2)设,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的t≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)求证:(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数 f(x)=ax+1nx(a∈R).
(1)若a=2,求曲线y=f(x)在x=l处切线的斜率.
(2)设 g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+lnx(a∈R).
(1)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(2)当a<0时,求f(x)的单调区间;
(3)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:黄冈模拟 题型:解答题

已知函数f(x)=ax+lnx(a∈R).
(1)若a=1,求曲线y=f(x)在x=
1
2
处切线的斜率;
(2)求函数f(x)的单调增区间;
(3)设g(x)=2x,若对任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>


同步练习册答案