精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax+lnx(a∈R).
(1)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(2)当a<0时,求f(x)的单调区间;
(3)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

解:(1)由已知,…(2分)
∴f'(1)=2+1=3.
故曲线y=f(x)在x=1处切线的斜率为3.…(4分)
(2)求导函数可得.…(5分)
当a<0时,由f'(x)=0,得
在区间上,f'(x)>0;在区间上,f'(x)<0,
所以,函数f(x)的单调递增区间为,单调递减区间为…(10分)
(3)由已知转化为f(x)max<g(x)max
∵g(x)=x2-2x+2=(x-1)2+1,x2∈[0,1],∴g(x)max=2…(11分)
由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.
(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)
当a<0时,f(x)在上单调递增,在上单调递减,
故f(x)的极大值即为最大值,
所以2>-1-ln(-a),所以ln(-a)>-3,
解得.…(14分)
分析:(1)利用导数的几何意义,可求曲线y=f(x)在x=1处切线的斜率;
(2)求导函数,在区间上,f'(x)>0;在区间上,f'(x)<0,故可得函数的单调区间;
(3)由已知转化为f(x)max<g(x)max,可求g(x)max=2,f(x)最大值-1-ln(-a),由此可建立不等式,从而可求a的取值范围.
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查求参数的值,解题的关键是转化为f(x)max<g(x)max
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案