精英家教网 > 高中数学 > 题目详情
设a<0,b>0,不等式a<
1
x
<b的解集为(  )
A.(
1
a
,0)∪(0,
1
b
B.(-
1
b
,-
1
a
C.(-
1
b
,0)∪(0,-
1
a
D.(-∞,
1
a
)∪(
1
b
,+∞)
相关习题

科目:高中数学 来源: 题型:

设a<0,b>0,不等式a<
1
x
<b的解集为(  )
A、(
1
a
,0)∪(0,
1
b
B、(-
1
b
,-
1
a
C、(-
1
b
,0)∪(0,-
1
a
D、(-∞,
1
a
)∪(
1
b
,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a<0,b>0,不等式a<
1
x
<b的解集为(  )
A.(
1
a
,0)∪(0,
1
b
B.(-
1
b
,-
1
a
C.(-
1
b
,0)∪(0,-
1
a
D.(-∞,
1
a
)∪(
1
b
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

研究问题:“已知关于x的不等式ax2-bx+c>0,解集为(1,2),解关于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,设
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
参考上述解法,解决如下问题:已知关于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),则不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
    第一组:f1(x)=sinx,  f2(x)=cosx,  h(x)=sin(x+
π
3
)

    第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(Ⅱ)设f1(x)=log2x,  f2(x)=log
1
2
x,  a=2,  b=1
,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(Ⅲ)设f1(x)=x,   f2(x)=
1
x
   (1≤x≤10)
,取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:怀柔区二模 题型:解答题

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
第一组:f1(x)=sinx,  f2(x)=cosx,  h(x)=sin(x+
π
3
)

第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(Ⅱ)设f1(x)=log2x,  f2(x)=log
1
2
x,  a=2,  b=1
,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(Ⅲ)设f1(x)=x,   f2(x)=
1
x
   (1≤x≤10)
,取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在曲线C:y=
1
x
 (x>1)
上,曲线C在点P处的切线与函数y=kx(k>0)的图象交于点A,与x轴交于点B,设点P的横坐标为t,点A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(1)求f(t)的解析式;
(2)设数列{an}满足a1=1,an=f(
an-1
) (n≥2 且 x∈N*)
,求数列{an}的通项公式;
(3)在 (2)的条件下,当1<k<3时,证明不等式a1+a2+…+an
3n-8k
k

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P在曲线C:y=
1
x
 (x>1)
上,曲线C在点P处的切线与函数y=kx(k>0)的图象交于点A,与x轴交于点B,设点P的横坐标为t,点A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(1)求f(t)的解析式;
(2)设数列{an}满足a1=1,an=f(
an-1
) (n≥2 且 x∈N*)
,求数列{an}的通项公式;
(3)在 (2)的条件下,当1<k<3时,证明不等式a1+a2+…+an
3n-8k
k

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在曲线C:y=
1
x
(x>1)上,设曲线C在点P处的切线为l,若l与函数y=kx(k>0)的图象的交点为A,与x轴的交点为B,设点P的横坐标为t,A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=f(
an-1
)
(n≥2),数列{bn}满足bn=
1
an
-
k
3
,求an与bn
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>


同步练习册答案