精英家教网 > 高中数学 > 题目详情
函数f(x)=log
1
2
(3-2x-x2)
的值域为(  )
A.(-∞,+∞)B.[-2,+∞)C.(0,+∞)D.[-2,0)
相关习题

科目:高中数学 来源: 题型:

函数f(x)=log
1
2
(3-2x-x2)
的值域为(  )
A、(-∞,+∞)
B、[-2,+∞)
C、(0,+∞)
D、[-2,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=log
1
2
(3-2x-x2)
的值域为(  )
A.(-∞,+∞)B.[-2,+∞)C.(0,+∞)D.[-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
2
[x2-2(2a-1)x+8](a∈R)
(1)若使函数f(x)在[a,+∞﹚上为减函数,求a的取值范围;
(2)当a=
3
4
时,求y=f(sin(2x-
π
3
)
),x∈[
π
12
π
2
]的值域.
(3)若关于x的方程f(x)=-1+log
1
2
(x+3)
在[1,3]上有且只有一解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=log
1
2
[x2-2(2a-1)x+8](a∈R)
(1)若使函数f(x)在[a,+∞﹚上为减函数,求a的取值范围;
(2)当a=
3
4
时,求y=f(sin(2x-
π
3
)
),x∈[
π
12
π
2
]的值域.
(3)若关于x的方程f(x)=-1+log
1
2
(x+3)
在[1,3]上有且只有一解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
②若m≥-1,则函数f(x)=log
1
2
(x2-2x-m)
的值域为R;
③“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件.
④函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑤“x1>1且x2>2”是“x1+x2>3且x1x2>2”的充要条件;
其中正确命题的个数是
②③
②③

查看答案和解析>>

科目:高中数学 来源:天津模拟 题型:填空题

给出下列四个命题:
①已知a=
π0
sinxdx,
(
3
,a)
到直线
3
x-y+1=0
的距离为1;
②若f'(x0)=0,则函数y=f(x)在x=x0取得极值;
③m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④在极坐标系中,点P(2,
π
3
)
到直线ρsin(θ-
π
6
)=3
的距离是2.
其中真命题是______(把你认为正确的命题序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)给出下列四个命题:
①已知a=
π
0
sinxdx,
(
3
,a)
到直线
3
x-y+1=0
的距离为1;
②若f'(x0)=0,则函数y=f(x)在x=x0取得极值;
③m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④在极坐标系中,点P(2,
π
3
)
到直线ρsin(θ-
π
6
)=3
的距离是2.
其中真命题是
①③④
①③④
(把你认为正确的命题序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①函数y=log
1
2
(x2-2x-3)
的单调增区间是(-∞,1);
②若函数y=f(x)定义域为R且满足f(1-x)=f(x+1),则它的图象关于y轴对称;
③函数f(x)=
x
1+|x|
(x∈R)的值域为(-1,1);
④函数y=|3-x2|的图象和直线y=a(a∈R)的公共点个数是m,则m的值可能是0,2,3,4;
⑤若函数f(x)=x2-2ax+5(a>1)在x∈[1,3]上有零点,则实数a的取值范围是[
5
,3]

其中正确的序号是
③④⑤
③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青州市模拟)给出下列六个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
③若m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件.
⑤函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑥满足条件AC=
3
,∠B=60°
,AB=1的三角形△ABC有两个.
其中正确命题的个数是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:
(1)不等式(x-1)
x2-x-2
0的解集为[2,+∞);
(2)若a,b∈R,则“log3a>log3b”是“(
1
3
)a<(
1
3
)b
”成立的必要不充分条件;
(3)把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数
y=sin(-2x+
π
4
)(x∈R)
的图象;
(4)函数f(x)=log
1
2
(x2+ax+2)
的值域为R,则实数a的取值范围是(-2
2
,2
2
).
其中正确的说法有(  )
A、.1个B、2个
C、3个D、.4个

查看答案和解析>>


同步练习册答案