精英家教网 > 高中数学 > 题目详情
若函数f(x)=-
1
2
x2+alnx
在区间(1,+∞)上是减函数,则实数a的取值范围为(  )
A.[1,+∞)B.(1,+∞)C.(-∞,1]D.(-∞,1)
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=-
1
2
x2+alnx
在区间(1,+∞)上是减函数,则实数a的取值范围为(  )
A、[1,+∞)
B、(1,+∞)
C、(-∞,1]
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=-
1
2
x2+alnx
在区间(1,+∞)上是减函数,则实数a的取值范围为(  )
A.[1,+∞)B.(1,+∞)C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2-alnx
,a∈R是常数.
(1)若a=2,求这个函数的图象在x=1处的切线方程;
(2)求f(x)在区间[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2-(1+a)x+alnx
,其中a>0.
(Ⅰ) 求函数f(x)的极小值点;
(Ⅱ)若曲线y=f(x)在点A(m,f(m)),B(n,f(n))处的切线都与y轴垂直,问是否存在常数a,使函数y=f(x)在区间[m,n]上存在零点?如果存在,求a的值:如果不存在,请说明理由.
请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡把所选题目的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2-alnx(a∈R)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)设g(x)=f(x)+2x,若g(x)在[1,e]上不单调且仅在x=e处取得最大值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
12
x2+(a+1)x+1

(1)当a=-1时,求函数f(x)的单调增区间;
(2)若函数f(x)在(0,+∞)上是增函数,求实数a的取值范围;
(3)若a>0,且对任意x1,x2∈(0,+∞),x1≠x2,都有|f(x1)-f(x2)|>2|x1-x2|,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx,g(x)=
1
2
x2

(1)记h(x)=f(x)-g(x),若a=4,求h(x)的单调递增区间;
(2)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(3)若在[1,e]上存在一点x0,使得f(x0)-f′(x0)>g′(x0)+
1
g′(x0)
成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx,g(x)=
12
x2
(1)记h(x)=f(x)-g(x),若a=4,求h(x)的单调递增区间;
(2)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(3)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
12
x2+(a+1)x+1

(Ⅰ)当a=-1时,求函数f(x)的单调递增区间;
(Ⅱ)若函数f(x)在定义域(0,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=alnx,g(x)=
1
2
x2

(1)记h(x)=f(x)-g(x),若a=4,求h(x)的单调递增区间;
(2)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(3)若在[1,e]上存在一点x0,使得f(x0)-f′(x0)>g′(x0)+
1
g′(x0)
成立,求a的取值范围.

查看答案和解析>>


同步练习册答案