精英家教网 > 高中数学 > 题目详情
当x>2时,不等式x+
4
x-2
a恒成立,则实数a的(  )
A.最小值是8B.最小值是6C.最大值是8D.最大值是6
相关习题

科目:高中数学 来源: 题型:

当x>2时,不等式x+
4
x-2
a恒成立,则实数a的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

当x>2时,不等式x+
4
x-2
a恒成立,则实数a的(  )
A.最小值是8B.最小值是6C.最大值是8D.最大值是6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b(a,b∈R),g(x)=2x2-4x-16,且|f(x)|≤|g(x)|对x∈R恒成立.
(1)求a、b的值;
(2)若对x>2,不等式f(x)≥(m+2)x-m-15恒成立,求实数m的取值范围.
(3)记h(x)=-
1
2
f(x)-4,那么当k
1
2
时,是否存在区间[m,n](m<n),使得函数h(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+ax+b(a,b∈R),g(x)=2x2-4x-16,且|f(x)|≤|g(x)|对x∈R恒成立.
(1)求a、b的值;
(2)若对x>2,不等式f(x)≥(m+2)x-m-15恒成立,求实数m的取值范围.
(3)记h(x)=-数学公式f(x)-4,那么当k数学公式时,是否存在区间[m,n](m<n),使得函数h(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的奇函数,且当x>0时,f(x)=lg(x2-ax+10),a∈R.
(1)若f(1)=lg5,求f(x)的解析式;
(2)若a=0,不等式f(k•2x)+f(4x+k+1)>0恒成立,求实数k的取值范围;
(3)若f(x)的值域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)不等式ax2+4x+a>1-2x2对一切x∈R恒成立,求实数a的取值范围
(2)已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x∈(0,+∞)时,f(x)=ax+2lnx,(a∈R),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数数学公式的定义域为(0,+∞)(a为实数).
(1)当a=-1时,求函数y=f(x)的值域(不必说明理由);
(2)若函数y=f(x)在[1,+∞)定义域上是增函数,求负数a的取值范围;
(3)在(2)的条件下,若不等式f(m•4x+1)≥f(2x)(m>0,且m为常数)在x∈(0,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f( x )=2x-
ax
的定义域为(0,+∞)(a为实数).
(1)当a=-1时,求函数y=f(x)的值域(不必说明理由);
(2)若函数y=f(x)在[1,+∞)定义域上是增函数,求负数a的取值范围;
(3)在(2)的条件下,若不等式f(m•4x+1)≥f(2x)(m>0,且m为常数)在x∈(0,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线交椭圆于S,T两点,交抛物线于C,D两点,且
|CD|
|ST|
=2
2

(I)求椭圆E的标准方程;
(Ⅱ)设Q(2,0),过点(-1,0)的直线l交椭圆E于M、N两点.
(i)当
QM
QN
=
19
3
时,求直线l的方程;
(ii)记△QMN的面积为S,若对满足条件的任意直线l,不等式S>λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>


同步练习册答案