精英家教网 > 高中数学 > 题目详情
P是抛物线x2=
1
2
(y-1)
上的动点,点A(0,-1),点M在直线PA上且分PA所成的比为2:1,则点M的轨迹方程是(  )
A.x2=
1
6
(y+
1
3
)
B.y2=
1
6
(x+
1
3
)
C.x2=
1
3
(y-
1
3
)
D.x2=-
1
3
(y+1)
相关习题

科目:高中数学 来源: 题型:

P是抛物线x2=
1
2
(y-1)
上的动点,点A(0,-1),点M在直线PA上且分PA所成的比为2:1,则点M的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是抛物线x2=
1
2
(y-1)
上的动点,点A(0,-1),点M在直线PA上且分PA所成的比为2:1,则点M的轨迹方程是(  )
A.x2=
1
6
(y+
1
3
)
B.y2=
1
6
(x+
1
3
)
C.x2=
1
3
(y-
1
3
)
D.x2=-
1
3
(y+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点A(-4,0)的动直线l与抛物线C:x2=2py(p>0)相交于B、C两点.当l的斜率是
1
2
时,
AC
=4
AB

(1)求抛物线C的方程;
(2)设BC的中垂线在y轴上的截距为b,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:宁德模拟 题型:解答题

已知过点A(-4,0)的动直线l与抛物线C:x2=2py(p>0)相交于B、C两点.当l的斜率是
1
2
时,
AC
=4
AB

(1)求抛物线C的方程;
(2)设BC的中垂线在y轴上的截距为b,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、△ABC中,已知A(1,1),B(4,1),C(2,3),则AB边上的高的方程是x=2
B、方程y=x2(x≥0)的曲线是抛物线
C、已知平面上两定点A、B,动点P满足|PA|-|PB|=
1
2
|AB|,则P点的轨迹是双曲线
D、第一、三象限角平分线的方程是y=x

查看答案和解析>>

科目:高中数学 来源: 题型:

一青蛙从点A0(x0,y0)开始依次水平向右和竖直向上跳动,其落点坐标依次是Ai(xi,yi)(i∈N*),(如图所示,A0(x0,y0)坐标以已知条件为准),Sn表示青蛙从点A0到点An所经过的路程.
(1)若点A0(x0,y0)为抛物线y2=2px(p>0)准线上一点,点A1,A2均在该抛物线上,并且直线A1A2经过该抛物线的焦点,证明S2=3p.
(2)若点An(xn,yn)要么落在y=x所表示的曲线上,要么落在y=x2所表示的曲线上,并且A0(
1
2
1
2
)
,试写出
lim
n→+∞
Sn
(不需证明);
(3)若点An(xn,yn)要么落在y=2
1+8x
-1
所表示的曲线上,要么落在y=2
1+8x
+1
所表示的曲线上,并且A0(0,4),求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知四点O(0,0),F(0,
1
2
)
,M(0,1),N(0,2).点P(x0,y0)在抛物线x2=2y上
(Ⅰ)当x0=3时,延长PN交抛物线于另一点Q,求∠POQ的大小;
(Ⅱ)当点P(x0,y0)(x0≠0)在抛物线x2=2y上运动时,
ⅰ)以MP为直径作圆,求该圆截直线y=
1
2
所得的弦长;
ⅱ)过点P作x轴的垂线交x轴于点A,过点P作该抛物线的切线l交x轴于点B.问:是否总有∠FPB=∠BPA?如果有,请给予证明;如果没有,请举出反例.

查看答案和解析>>


同步练习册答案