设定点F1(0,-4)、F2(0,4),动点P满足条件|PF1|+|PF2|=a+
|
科目:高中数学 来源:不详 题型:单选题
| 16 |
| a |
| A.椭圆 | B.线段 | C.不存在 | D.椭圆或线段 |
科目:高中数学 来源:2012-2013学年福建省福州市高二(上)期末数学试卷(期末)(解析版) 题型:选择题
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
科目:高中数学 来源:2012年人教A版选修2-1 2.1曲线与方程练习卷(解析版) 题型:解答题
(14分)设F1、F2分别为椭圆C:
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线
写出具有类似特性的性质,并加以证明.
科目:高中数学 来源:2010年湖北省高二上学期期中考试理科数学卷 题型:解答题
(14分)设F1、F2分别为椭圆C:
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线
写出具有类似特性的性质,并加以证明.
科目:高中数学 来源: 题型:解答题
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com