精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知直线l:y=3与抛物线C:x2=py(p>0)相交于A,B两点,且OA⊥OB,则抛物线C的方程为(  )
A.y2=6xB.y2=3xC.x2=6yD.x2=3y
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l:2
2
x-y+3+8
2
=0
和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
3

(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l:3x+y-5=0.
(1)求过点P(1,1)且与直线l垂直的直线的方程;
(2)设直线l上的点Q到直线x-y-1=0的距离为
2
,求点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知直线l:8x+6y+1=0,圆C1:x2+y2+8x-2y+13=0,圆C2:x2+y2+8tx-8y+16t+12=0.
(1)当t=-1时,试判断圆C1与圆C2的位置关系,并说明理由;
(2)若圆C1与圆C2关于直线l对称,求t的值;
(3)在(2)的条件下,若P(a,b)为平面上的点,是否存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1与圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,若存在,求点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l:y=3与抛物线C:x2=py(p>0)相交于A,B两点,且OA⊥OB,则抛物线C的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=2cosθ,则圆心C到直线l的距离为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程是
x=
2
2
t, 
y=
2
2
t+4
2
(t为参数);以O为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=2cos(θ+
π
4
)
.由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线
3
x+y-6=0与圆(x-
3
)2+(y-1)2
=4交于A,B两点,则直线OA与直线OB的倾斜角之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的斜率为2.
(1)若直线l过点A(-2,1),求直线l的方程;
(2)若直线l在x轴、y轴上的截距之和为3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知直线的参数方程为(为参数),直线与抛物线交于两点,求线段的长.

查看答案和解析>>


同步练习册答案