数列{an+1-an}是一个首项为2,公差为2的等差数列,a1=1,若43<am<73,则m=( )
|
科目:高中数学 来源:2012-2013学年浙江省台州市高一(下)期末数学试卷(解析版) 题型:选择题
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| 3 |
| 2 |
科目:高中数学 来源:2013-2014学年江苏苏州市高三调研测试理科数学试卷(解析版) 题型:解答题
设数列{an}满足an1=2ann2?4n1.
(1)若a1?3,求证:存在
(a,b,c为常数),使数列{anf(n)}是等比数列,并求出数列{an}的通项公式;
(2)若an是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.
科目:高中数学 来源:2013-2014学年江苏苏州市高三调研测试文科数学试卷(解析版) 题型:解答题
设数列{an}满足an1=2ann2?4n1.
(1)若a1?3,求证:存在
(a,b,c为常数),使数列{anf(n)}是等比数列,并求出数列{an}的通项公式;
(2)若an是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.
科目:高中数学 来源: 题型:解答题
设数列{an}满足an+1=2an+n2-4n+1.
(1)若a1=3,求证:存在
(a,b,c为常数),使数列{an+f(n)}是等比数列,并求出数列{an}的通项公式;
(2)若an是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.
科目:高中数学 来源: 题型:解答题
设数列{an}满足an+1=2an+n2-4n+1.
(1)若a1=3,求证:存在
(a,b,c为常数),使数列{an+f(n)}是等比数列,并求出数列{an}的通项公式;
(2)若an是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.
科目:高中数学 来源:不详 题型:解答题
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com