精英家教网 > 高中数学 > 题目详情
已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),O为原点,F为右焦点,点M是椭圆右准线l上(除去与x轴的交点)的动点,过F作OM的垂线与以OM为直径的圆交于点N,则线段ON的长为(  )
A.cB.bC.aD.不确定
相关习题

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),长轴两端点A、B,短轴上端顶点为M,点O为坐标原点,F为椭圆的右焦点,且
AF
FB
=1,|OF|=1.
(1)求椭圆方程;
(2)直线l交椭圆于P、Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:河池模拟 题型:单选题

已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),O为原点,F为右焦点,点M是椭圆右准线l上(除去与x轴的交点)的动点,过F作OM的垂线与以OM为直径的圆交于点N,则线段ON的长为(  )
A.cB.bC.aD.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
a2
+
y2
b2
=1 ( a>b>0 )
,它的一个顶点为M(0,1),离心率e=
6
3

(1)求椭圆的方程;
(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为
3
2
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,它的一个顶点为A(0,2),离心率e=
6
3

(1)求椭圆的方程;(2)直线l:y=kx-2(k∈R且k≠0),与椭圆相交于不同的两点M、N,点P为线段MN的中点且有AP⊥MN,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A、B分别是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,若|k1k2|=
1
4
,则椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源:重庆模拟 题型:解答题

已知椭圆方程为
x2
a2
+
y2
b2
=1 ( a>b>0 )
,它的一个顶点为M(0,1),离心率e=
6
3

(1)求椭圆的方程;
(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为
3
2
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A、B分别是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,若|k1k2|=
1
4
,则椭圆的离心率为(  )
A.
1
2
B.
2
2
C.
3
2
D.
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的方程
x2
a2
+
y2
b2
=1(a>b>0)的焦点分别为F1,F2,|F1F2|=2,离心率е=
1
2
,则椭圆方程为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的方程
x2
a2
+
y2
b2
=1(a>b>0)的焦点分别为F1,F2,|F1F2|=2,离心率е=
1
2
,则椭圆方程为(  )
A.
x2
16
+
y2
12
=1
B.
x2
4
+y2=1
C.
x2
4
+
y2
3
=1
D.
x2
3
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),O为原点,F为右焦点,点M是椭圆右准线l上(除去与x轴的交点)的动点,过F作OM的垂线与以OM为直径的圆交于点N,则线段ON的长为(  )

查看答案和解析>>


同步练习册答案