精英家教网 > 高中数学 > 题目详情
若函数y=f(x)+sinx在区间(-
π
4
4
)
内单调递增,则f(x)可以是(  )
A.sin(π-x)B.cos(π-x)C.sin(
π
2
-x)
D.cos(
π
2
+x)
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)+sinx在区间(-
π
4
4
)
内单调递增,则f(x)可以是(  )
A、sin(π-x)
B、cos(π-x)
C、sin(
π
2
-x)
D、cos(
π
2
+x)

查看答案和解析>>

科目:高中数学 来源:福建模拟 题型:单选题

若函数y=f(x)+sinx在区间(-
π
4
4
)
内单调递增,则f(x)可以是(  )
A.sin(π-x)B.cos(π-x)C.sin(
π
2
-x)
D.cos(
π
2
+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对于任意的两个不相等的实数x1,x2∈A都有0<
f(x1)-f(x2)
x1-x2
<1
成立,则称f(x)在区间A上为“0-1函数”.则下列函数在定义域上为“0-1函数”的有
 
(请填写相应的序号).
(1)y=sinx,x∈[-
π
2
π
2
]

(2)y=lnx,x>1;
(3)y=ex,x∈R;
(4)y=x2+2x+3,0<x<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-π,
2
]
上的函数y=f(x)图象关于直线x=
π
4
对称,当x≥
π
4
时,f(x)=-sinx.
(1)作出y=f(x)的图象;
(2)求y=f(x)的解析式;
(3)若关于x的方程f(x)=-
9
10
有解,将方程所有的解的和记为M,结合(1)中函数图象,求M的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-π,
2
]
上的函数y=f(x)图象关于直线x=
π
4
对称,当x≥
π
4
时,f(x)=-sinx.
(1)作出y=f(x)的图象;(2)求y=f(x)的解析式;
(3)若关于x的方程f(x)=a有解,将方程中的a取一确定的值所得的所有的解的和记为Ma,求Ma的所有可能的值及相应的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2(
π
4
+x)+
3
cos2x-1,x∈R

(1)求函数f(x)的最小正周期和单调增区间;
(2)函数f(x)的图象由函数y=sinx的图象经过怎样的变换得到?(写出变换过程)
(3)在△ABC中,若f(C)=
3
, 2sinB=cos(A-C)-cos(A+C)
,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题
(1)x∈(0,
π
2
)
时,函数y=sinx+
2
sinx
的最小值为2
2

(2)若f(x)是奇函数,则f(x-1)的图象关于A(1,0)对称;
(3)“数列{an}为等比数列”是“数列{anan+1}为等比数列的充分不必要条件;
(4)若函数f(x)=log3(-x2+2mx-m2+36)在区间[-3,2)上是减函数,则m≤-3;
其中正确命题的序号是
(2)(3)
(2)(3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出以下命题
(1)x∈(0,
π
2
)
时,函数y=sinx+
2
sinx
的最小值为2
2

(2)若f(x)是奇函数,则f(x-1)的图象关于A(1,0)对称;
(3)“数列{an}为等比数列”是“数列{anan+1}为等比数列的充分不必要条件;
(4)若函数f(x)=log3(-x2+2mx-m2+36)在区间[-3,2)上是减函数,则m≤-3;
其中正确命题的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:
a
=(4sinx,cosx-sinx),
b
=(sin2
π
4
+
x
2
),cosx+sinx),函数f(x)=
a
b

(1)设ω>0且为常数,若y=f(ωx)在区间[-
π
2
3
]上是增函数,求ω的取值范围.
(2)若f(x)=cosx+1,求tan(2x+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx•sinx,给出下列五个说法:
①f(
1921π
12
)=
1
4

②若f(x1)=-f(x2),则x1=-x2
③f(x)在区间[-
π
6
π
3
]上单调递增; 
④将函数f(x)的图象向右平移
4
个单位可得到y=
1
2
cos2x的图象;
⑤f(x)的图象关于点(-
π
4
,0)成中心对称.
其中正确说法的序号是

查看答案和解析>>


同步练习册答案