精英家教网 > 高中数学 > 题目详情
已知曲线f(x)=lnx在点(x0,f(x0))处的切线经过点(0,1),则x0的值为(  )
A.
1
e
B.e2C.eD.10
相关习题

科目:高中数学 来源:海淀区一模 题型:单选题

已知曲线f(x)=lnx在点(x0,f(x0))处的切线经过点(0,1),则x0的值为(  )
A.
1
e
B.e2C.eD.10

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知曲线f(x)=lnx在点(x0,f(x0))处的切线经过点(0,1),则x0的值为


  1. A.
    数学公式
  2. B.
    e2
  3. C.
    e
  4. D.
    10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知曲线f(x)=lnx在点(x0,f(x0))处的切线经过点(0,1),则x0的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-
1
x
)-lnx,x∈R.
(1)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若a>0,求函数f(x)的单调区间;
(3)设函数g(x)=-
a
x
.若至少存在一个x0∈[1,+∞),使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f (x)=lnx,g(x)=ex
( I)若函数φ (x)=f (x)-数学公式,求函数φ (x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源:哈尔滨一模 题型:解答题

已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-
x+1
x-1
,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源:湖北省模拟题 题型:解答题

已知函数f(x)=lnx,g(x)=ex,  
(Ⅰ)若函数φ(x)= f(x)-,求函数φ(x)的单调区间;  
(Ⅱ)设直线l为函数的图象上一点A(x0,f(x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切。

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e为自然对数的底).
(1)当a>0时,求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
ax
+lnx-1,g(x)=(lnx-1)ex+x

(1)判断函数f(x)在(0,e]上的单调性;
(2)是否存在实数x0∈(0,+∞),使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-lnx,g(x)=-
1
2
ax2+(2a-1)x
,A∈R.
(Ⅰ)当x∈(0,e]时,f(x)的最小值是3,求a的值;
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.试问:函数G(x)=g(x)-f(x),是否存在“中值相依切线”,请说明理由.

查看答案和解析>>


同步练习册答案