【题目】随着“节能减排、绿色出行”的健康生活意识的普及,新能源汽车越来越多地走进百姓的生活.某汽车租赁公司拥有40辆电动汽车,据统计,当每辆车的日租金为120元时,可全部租出;当每辆车的日租金每增加5元时,未租出的车将增加1辆;该公司平均每日的各项支出共2100元.
(1)若某日共有x辆车未租出,则当日每辆车的日租金为 元;
(2)当每辆车的日租金为多少时,该汽车租赁公司日收益最大?最大日收益是多少?
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=Rt∠,AC=6,BC=8,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则BE的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,网格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).
(1)把△ABC向下平移5格后得到△A1B1C1,写出点A1,B1,C1的坐标,并画出△A1B1C1;
(2)把△ABC绕点O按顺时针方向旋转180°后得到△A2B2C2,写出点A2,B2,C2的坐标,并画出△A2B2C2;
(3)把△ABC以点O为位似中心放大得到△A3B3C3,使放大前后对应线段的比为1∶2,写出点A3,B3,C3的坐标,并画出△A3B3C3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:
(1)求出y与x的函数关系式.(纯利润=总收入-总支出)
(2)当y=106000时,求该厂在这个月中生产产品的件数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E在OB上,且∠OAE=∠OBA.
(1)如图①,求点E的坐标
(2)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B,BE′.
①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;
②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点P0的坐标为(2,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P为抛物线y=x2上一动点.
(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;
(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.
①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.
②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com