精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知点A(20),点B(04),点EOB上,且∠OAE=∠OBA.

(1)如图①,求点E的坐标

(2)如图②,将△AEO沿x轴向右平移得到△AEO′,连接ABBE.

①设AA′=m,其中0<m<2,试用含m的式子表示AB2BE2,并求出使AB2BE2取得最小值时点E′的坐标;

②当ABBE′取得最小值时,求点E′的坐标(直接写出结果即可).

【答案】(1)(0,1)(2)(1,1);(,1).

【解析】

(1)根据相似三角形OAE∽△OBA的对应边成比例得到则易求OE=1,所以E(0,1);

(2)如图②,连接EE′.在RtA′BO中,勾股定理得到A′B2=(2-m)2+42=m2-4m+20,在RtBE′E中,利用勾股定理得到BE′2=E′E2+BE2=m2+9,则A′B2+BE′2=2m2-4m+29=2(m-1)2+27.所以由二次函数最值的求法知,当m=1即点E′的坐标是(1,1)时,A′B2+BE′2取得最小值.

(1)如图①∵点A(-2,0),点B(0,4),

OA=2,OB=4.

∵∠OAE=0BA,EOA=AOB=90°,

∴△OAE∽△OBA,

,即

解得OE=1,

∴点E的坐标为(0,1);

(2)①如图②,连接EE′.

由题设知AA′=m(0<m<2),则A′O=2-m.

RtA′BO中,由A′B2=A′O2+BO2,得A′B2=(2-m)2+42=m2-4m+20.

∵△A′E′O′AEO沿x轴向右平移得到的,

EE′AA′,且EE′=AA′.

∴∠BEE′=90°,EE′=m.

又∵BE=OB-OE=3,

∴在RtBE′E中,BE′2=E′E2+BE2=m2+9,

A′B2+BE′2=2m2-4m+29=2(m-1)2+27.

m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).

②如图②,过点AAB′x,并使AB′=BE=3.

易证AB′A′≌△EBE′,

B′A′=BE′,

A′B+BE′=A′B+B′A′.

当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.

易证AB′A′∽△OBA′,

,AO=2,

AA′=×2=

EE′=AA′=

∴点E′的坐标是(,1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的再生二次函数,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(-1,n),请完成下列任务:

(1)(尝试)

t=2时,抛物线y=t(x2-3x+2)+(1-t)(-2x+4)的顶点坐标为________;

(2)判断点A是否在抛物线L上;

(3)n的值.

(4)(发现)

通过(2)(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为________.

(5)(应用)

二次函数y=-3x2+5x+2是二次函数y=x23x+2和一次函数y=-2x+4的一个再生二次函数吗?如果是,求出t的值;如果不是,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设EAD的中点.

(1)若FCD上一动点,求出当△DEF与△COD相似时点F的坐标;

(2)过Ex轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着节能减排、绿色出行的健康生活意识的普及,新能源汽车越来越多地走进百姓的生活.某汽车租赁公司拥有40辆电动汽车,据统计,当每辆车的日租金为120元时,可全部租出;当每辆车的日租金每增加5元时,未租出的车将增加1辆;该公司平均每日的各项支出共2100元

(1)若某日共有x辆车未租出,则当日每辆车的日租金为 元;

(2)当每辆车的日租金为多少时,该汽车租赁公司日收益最大?最大日收益是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线轴交于点,与轴交于点,则能使为等腰三角形的抛物线的条数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2

(1)求y与x之间的函数关系式;

(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们用表示不大于的最大整数,例如:;用表示大于的最小整数,例如:.解决下列问题:

1= ,=

2)若=2,则的取值范围是 ;若=1,则的取值范围是

3)已知满足方程组,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中反比例函数yb0)与二次函数yax2+bxa0)的图象大致是(  )

A. B.

C. D.

查看答案和解析>>

同步练习册答案