【题目】已知关于x的一元二次方程x2+2(k+1)x+k2+2=0有两个实根x1,x2.
(1)求实数k的取值范围;
(2)若实数k能使x1﹣x2=2,求出k的值.
【答案】(1)k≥(2)3
【解析】试题分析:(1)根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出实数k的取值范围;
(2)根据根与系数的关系可得出x1+x2=﹣2(k+1)、x1x2=k2+2,结合(x1﹣x2)2=(x1+x2)2﹣4x1x2=(2)2,即可得出关于k的一元一次方程,解之即可得出结论.
试题解析:解:(1)∵原方程有两个实数根,∴△=[2(k+1)]2﹣4(k2+2)>0,解得:k≥.
(2)∵x1、x2是方程x2+2(k+1)x+k2+2=0有两个实根,∴x1+x2=﹣2(k+1),x1x2=k2+2,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=(2)2,∴[﹣2(k+1)]2﹣4(k2+2)=20,即8k﹣24=0,解得:k=3.
∵k>,∴k的值为3.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A的对应点A′落在中线AD上,且点A′是△ABC的重心,A′B′与BC相交于点E,那么BE:CE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“端午节”期间,小明一家自驾游去了离家200km的某地,如图是他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象.根据图象,解答下列问题:
(1)点A的实际意义是 ;
(2)求出线段AB的函数表达式;
(3)他们出发2.3h时,距目的地还有多少km?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,∠C=90,AC<BC,D为BC上一点,且到A,B两点的距离相等.
(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若∠B=37°,则∠CAD=_________度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90,AC=BC,将△ABC绕点C逆时针旋转α角(0<α<90)得到△A1B1C,连结BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F,
(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C全等除外);
(2)当△BB1D是等腰三角形时,求α.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:(参考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
平均数 | 方差 | 中位数 | |
甲 | 7 |
| 7 |
乙 |
| 5.4 |
|
(2)请从下列三个不同的角度对这次测试结果进行
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1) 当点P与点C重合时(如图①).求证:△BOG≌△POE;(4分)
(2)通过观察、测量、猜想:= ,并结合图②证明你的猜想;(5分)
(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=α,求的值.(用含α的式子表示)(5分)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,则△DCE的面积为( )
A. B. C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)
参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com