【题目】如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)①(1,0)②y=-x2-x+2(2)(﹣2,3)(3)存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18)
【解析】
试题分析:(1)①先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标;②设抛物线的解析式为y=y=a(x+4)(x﹣1),然后将点C的坐标代入即可求得a的值;
(2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=-m2﹣2m,然后利用三角形的面积公式可求得S△PAC=×PQ×4,然后利用配方法可求得△PAC的面积的最大值以及此时m的值,从而可求得点P的坐标;
(3)首先可证明△ABC∽△ACO∽△CBO,然后分以下几种情况分类讨论即可:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC; ④当点M在第四象限时,解题时,需要注意相似三角形的对应关系.
试题解析:(1)①y=x+2
当x=0时,y=2,当y=0时,x=﹣4,
∴C(0,2),A(﹣4,0),
由抛物线的对称性可知:点A与点B关于x=﹣对称,
∴点B的坐标为(1,0).
②∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),
∴可设抛物线解析式为y=a(x+4)(x﹣1),
又∵抛物线过点C(0,2),
∴2=﹣4a
∴a=-
∴y=-x2-x+2.
(2)设P(m,-m2-m+2).
过点P作PQ⊥x轴交AC于点Q,
∴Q(m,m+2),
∴PQ=-m2-m+2﹣(m+2)
=-m2﹣2m,
∵S△PAC=×PQ×4,
=2PQ=﹣m2﹣4m=﹣(m+2)2+4,
∴当m=﹣2时,△PAC的面积有最大值是4,
此时P(﹣2,3).
(3)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=,
∴∠CAO=∠BCO,
∵∠BCO+∠OBC=90°,
∴∠CAO+∠OBC=90°,
∴∠ACB=90°,
∴△ABC∽△ACO∽△CBO,
如下图:
①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;
③ 根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;
④ 当点M在第四象限时,设M(n,-n2-n+2),则N(n,0)
∴MN=n2+n﹣2,AN=n+4
当时,MN=AN,即n2+n﹣2=(n+4)
整理得:n2+2n﹣8=0
解得:n1=﹣4(舍),n2=2
∴M(2,﹣3);
当时,MN=2AN,即n2+n﹣2=2(n+4),
整理得:n2﹣n﹣20=0
解得:n1=﹣4(舍),n2=5,
∴M(5,﹣18).
综上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC相似.
科目:初中数学 来源: 题型:
【题目】已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:
(1)求反比例函数和直线的函数表达式;
(2)求△OPQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是( )
A. ①②B. ②③C. ②④D. ①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)﹣9+(+ )﹣(﹣12)+(﹣5)+(﹣ )
(2)(1﹣1 ﹣ + )×(﹣24)
(3)﹣ + ÷(﹣2)×(﹣ )
(4)﹣14﹣(1﹣ )÷3×|3﹣(﹣3)2|
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,抛物线y=x2+bx+c经过点A,B,交正x轴于点D,E是OC上的动点(不与C重合)连接EB,过B点作BF⊥BE交y轴与F
(1)求b,c的值及D点的坐标;
(2)求点E在OC上运动时,四边形OEBF的面积有怎样的规律性?并证明你的结论;
(3)连接EF,BD,设OE=m,△BEF与△BED的面积之差为S,问:当m为何值时S最小,并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列判断正确的是( )
A. 两边和一角对应相等的两个三角形全等 B. 一边及一锐角相等的两个直角三角形全等
C. 顶角和底边分别相等的两个等腰三角形全等 D. 三个内角对应相等的两个三角形全等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com