精英家教网 > 初中数学 > 题目详情

【题目】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象可能是(
A.
B.
C.
D.

【答案】C
【解析】解:二次函数的对称轴为:x=﹣ 当a>0,b>0时,
一次函数的图象经过一、二、三象限,
二次函数的图象开口向上,对称轴x<0,
当a>0,b<0时,
一次函数的图象经过一、三、四象限,
二次函数的图象开口向上,对称轴x>0,
当a<0,b>0时,
一次函数的图象经过一、二、四象限,
二次函数的图象开口向下,对称轴x>0,
当a<0,b<0时,
一次函数的图象经过二、三、四象限,
二次函数的图象开口向下,对称轴x<0,
故选C
【考点精析】通过灵活运用一次函数的图象和性质和二次函数的图象,掌握一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A和点B都在反比例函数y= 的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为C,P是线段OB上的动点,连接CP.设△ACP的面积为S,则下列说法正确的是(
A.S>3
B.S>6
C.3≤S≤6
D.3<S≤6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 与双曲线 交于点A.将直线 向右平移6个单位后,与双曲线 交于点B,与x轴交于点C,若 ,则k的值为(
A.12
B.14
C.18
D.24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,C为 的中点,若∠CBD=30°,⊙O的半径为12.
(1)求∠BAD的度数;
(2)求扇形OCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下5个结论:①x≤1时,y随x的增大而增大;②abc>0;③b<a+c;④4a+2b+c>0;⑤3a﹣b<0,其中正确的结论有(填上所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于(
A.20°
B.30°
C.40°
D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.
(1)当OC∥AB时,∠BOC的度数为
(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值;
(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.

查看答案和解析>>

同步练习册答案