精英家教网 > 初中数学 > 题目详情

【题目】如图,点A和点B都在反比例函数y= 的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为C,P是线段OB上的动点,连接CP.设△ACP的面积为S,则下列说法正确的是(
A.S>3
B.S>6
C.3≤S≤6
D.3<S≤6

【答案】C
【解析】解:过P作PD⊥AC于D,连接CB, 设A(x,y),则B(﹣x,﹣y),
∵点A在反比例函数y= 的图象上,
∴xy=6,
∵P是线段OB上的动点,
∴x≤PD≤2x,
∵S=SAPC= ACPD,
当PD最小时,此时P与O重合,PD=x,
∴S=SAPC= xy= ×6=3,
当PD最大时,此时P与B重合,PD=2x,
∴S=SAPC= ACPD= y2x=xy=6,
∴3≤S≤6,
故选C.

【考点精析】掌握比例系数k的几何意义是解答本题的根本,需要知道几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.

(1)如图①,若α=90°,求AA′的长;
(2)如图②,若α=120°,求点O′的坐标;
(3)在(Ⅱ)的条件下,边OA上 的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为tt>0)秒

(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);

(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点PQ同时出发,问点P运动多少秒时追上点Q

(3)若MAP的中点,N为PB的中点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;

(4)若点D是数轴上一点,点D表示的数是x,请你探索式子是否有最小值?如果有,直接写出最小值;如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.
(1)求2014至2016年该市投入科研经费的年平均增长率;
(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为4的正方形ABCD内接于点O,点E是 上的一动点(不与A、B重合),点F是 上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论: ① =
②△OGH是等腰三角形;
③四边形OGBH的面积随着点E位置的变化而变化;
④△GBH周长的最小值为4+
其中正确的是(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1、2、3的小球,乙口袋中装有分别标有数字4、5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.请用列表或树状图的方法(只选其中一种)求出两个数字之和能被3整除的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是14 ,则排球的直径是(
A.7cm
B.14cm
C.21cm
D.21 cm

查看答案和解析>>

同步练习册答案