精英家教网 > 初中数学 > 题目详情

【题目】一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数.已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.

(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________

(Ⅱ)求这个二次函数的解析式和自变量的取值范围.

【答案】0 ),(43

【解析】试题分析:()根据刚出手时离地面高度为米、经过4秒到达离地面3米的高度和经过10秒落到地面可得三点坐标

)利用待定系数法求解可得.

试题解析:()由题意知该二次函数图象上的三个点的坐标分别是(0 )、(43)、(100).故答案为:0 )、(43)、(100).

)设这个二次函数的解析式为y=ax2+bx+c将()三点坐标代入 解得 所以所求抛物线解析式为y=﹣x2+x+因为铅球从运动员抛出到落地所经过的时间为10所以自变量的取值范围为0x10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:

甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.

乙:分别作A,B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.

根据两人的作法可判断

A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】星光厨具店购进电饭煲和电压锅两种电器进行销售其进价与售价如表

进价(元/台)

售价(元/台)

电饭煲

200

250

电压锅

160

200

1)一季度,厨具店购进这两种电器共30台,用去了5600元,并且全部售完,问厨具店在该买卖中赚了多少钱?

2)为了满足市场需求,二季度厨具店决定采购电饭煲和电压锅共50台,且电饭煲的数量不大于电压锅的,请你通过计算判断,如何进货厨具店赚钱最多?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,点B关于AD的对称点为B′,连接AB′CB′CB′ADF点.

1)如图1,∠ABC=90°,求证:FCB′的中点;

2)小宇通过观察、实验、提出猜想:如图2,在点B绕点A旋转的过程中,点F始终为CB′的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

想法1:过点B′B′GCDADG点,只需证三角形全等;

想法2:连接BB′ADH点,只需证HBB′的中点;

想法3:连接BB′BF,只需证∠B′BC=90°

请你参考上面的想法,证明FCB′的中点.(一种方法即可)

3)如图3,当∠ABC=135°时,AB′CD的延长线相交于点E,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按如图所示的程序计算.若开始输入的的值为18,我们发现第1次得到的结果为9,第2次得到的结果为14,第3次得到的结果为7.……,请你探索第2019次得到的结果为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为,向西记为,单位:千米):

1)小王最后是否回到了总部?

2)小王离总部最远是多少米?在总部的什么方向?

3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,如果对角线ACBD相交并且相等,那么我们把这样的四边形称为等角线四边形.

1)在“平行四边形、矩形、菱形,正方形”中, 一定是等角线四边形(填写图形名称);

2)若MNPQ分别是等角线四边形ABCD四边ABBCCDDA的中点,当对角线ACBD还要满足 时,四边形MNPQ是正方形;

3)如图2,已知△ABC中,∠ABC90°,AB4BC3D为平面内一点.若四边形ABCD是等角线四边形,且ADBD,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点ECD的中点,点FBC上,且CF=2BF,连接AEAF,若AF=AE=7tanEAF=,则线段BF的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C

(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2

(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.

查看答案和解析>>

同步练习册答案