精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,动点从点开始沿着边向点的速度移动(不与点重合),动点从点开始沿着边向点的速度移动(不与点重合).若两点同时移动

当移动几秒时,的面积为

设四边形的面积为,当移动几秒时,四边形的面积为

【答案】(1)32cm2(2)当移动秒时,四边形的面积为

【解析】

(1)找出运动时间为t秒时PB、BQ的长度,根据三角形的面积公式结合BPQ的面积为32cm2,即可得出关于t的一元二次方程,解之即可得出结论;

(2)用ABC的面积减去BPQ的面积即可得出S,令其等于108即可得出关于t的一元二次方程,解之即可得出结论.

(1)运动时间为t秒时(0≤t<6),PB=AB-2t=12-2t,BQ=4t,

∴S△BPQ=PBBQ=24t-4t2=32,

解得:t1=2,t2=4.

答:当移动2秒或4秒时,△BPQ的面积为32cm2

(2)S=S△ABC-S△BPQ=ABBC-(24t-4t2)=4t2-24t+144=108,

解得:t=3.

答:当移动3秒时,四边形APQC的面积为108cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.

(1)通过计算,判断AD2ACCD的大小关系;

(2)求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长米)的空地上修建一个矩形花园,花园的一边靠墙,另三边用总长为的栅栏围成,若设花园平行于墙的一边长为,花园的面积为

之间的函数关系式,并写出自变量的取值范围;

满足条件的花园面积能达到吗?若能,求出此时的值,若不能,说明理由;

根据中求得的函数关系式,判断当取何值时,花园的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,ADBC边上的高,EAC的中点,PAD上的一个动点,当PCPE的和最小时,∠CPE的度数是_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个商人要建一个矩形的仓库,仓库的两边是住房墙,另外两边用长的建筑材料围成,且仓库的面积为

求这矩形仓库的长;

有规格为(单位:)的地板砖单价分别为/块和/块,若只选其中一种地板砖都恰好能铺满仓库的矩形地面(不计缝隙),用一种规格的地板砖费用较少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数(是常数,)在同一平面直角坐标系的图象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, AD平分∠CABBC于点E. 若∠BDA=90°,EAD中点,DE=2AB=5,则AC的长为(

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形△ABCBC边上的高恰好等于BC边长的一半,则∠BAC的度数是(  )

A.75°B.90°75°C.90° 75°15°D.75°15°60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABCADE中,∠BAC=DAE=90°AB=ACAD=AE,点CDE三点在同一条直线上,连接BDBE.以下四个结论:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中结论正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案