【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,(1)若CD=16,BE=4,则⊙O的半径为___;(2)点M在⊙O上,MD恰好经过圆心O,连接MB,若∠M=∠D,则∠D的度数为__.
【答案】(1)10; (2)30°.
【解析】
(1)设⊙O的半径为r,则OE=r﹣4,由垂径定理求得DE=EC=CD=8,在Rt△OED中,根据勾股定理可得r2=(r﹣4)2+82,解方程求得r的值即可;(2)由圆周角定理可得∠DOE=2∠M,由∠M=∠D,可得∠DOE=2∠D,再Rt△OED中,即可求得∠D=30°.
(1)设⊙O的半径为r,则OE=r﹣4,
∵AB是⊙O的直径,弦CD⊥AB,
∴DE=EC=CD=8,
在Rt△OED中,OD2=OE2+DE2,即r2=(r﹣4)2+82,
解得,r=10,
故答案为:10;
(2)由圆周角定理得,∠DOE=2∠M,
∵∠M=∠D,
∴∠DOE=2∠D,
∴∠D=30°,
故答案为:30°.
科目:初中数学 来源: 题型:
【题目】如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )
A. ∠BDO=60° B. ∠BOC=25° C. OC=4 D. BD=4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有人说:“数学是思维的体操”,运用和掌握必要的“数学思想”和“数学方法”是取胜数学的重要法宝.阅读下列例题:
(1)解方程:x2﹣2|x|﹣3=0.
解:①当x≥0时,有x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3.
②当x<0时,有x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.所以,原方程的解是x=3或﹣3.(数学的分类讨论思想)试解方程:x2﹣|x﹣1|﹣1=0.
(2)设a3+a﹣1=0,求a3+a+2018的值.
解:由a3+a﹣1=0得a3+a=1,代入,有a3+a+2018=1+2018=2019(整体代入或换元思想)
试一试:当a是一元二次方程x2﹣2018x+1=0的一个根时,求:a2﹣2017a+的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.
(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.
(2)求篮板底部点E到地面的距离.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生对“第二十届中国哈尔滨冰雪大世界”主题景观的了解情况,在全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图的不完整的两幅统计图:
(1)本次调查共抽取了多少名学生;
(2)通过计算补全条形图;
(3)若该学校共有名学生,请你估计该学校选择“比较了解”项目的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中有两点A(﹣2,4)、B(2,4),若二次函数y=ax2﹣2ax﹣3a(a≠0)的图象与线段AB只有一个交点,则( )
A. a的值可以是 B. a的值可以是
C. a的值不可能是﹣1.2 D. a的值不可能是1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com