【题目】如图,平行四边形ABCD中,对角线AC,BD交于点O,且AC⊥BC,点E是BC延长线上一点, ,连接DE.
(1)求证:四边形ACED为矩形;
(2)连接OE,如果BD=10,求OE的长.
【答案】(1)证明见解析;(2)OE=5.
【解析】
(1)由题干可知四边形ABCD是平行四边形,且 ,可证明四边形ACED是平行四边形,又AC⊥BC,可证明四边形ACED是矩形;
(2)由(1)可得∠E=90°,在Rt△ADE中根据定理可得,OE=BD,根据BD的长度可计算出OE的长度.
(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,,又∵ ,∴AD=CE∴四边形ABCD是平行四边形,又∵,∴∠ACE=90°,∴四边形ACED是矩形.
(2)∵对角线AC,BD交于点O,∴点O是BD的中点,∵四边形ACED是矩形,∴∠E=90°,在Rt△ADE中根据定理可得OE=BD,又∵BD=10,∴ OE=5,故答案为5.
科目:初中数学 来源: 题型:
【题目】如图正方形的顶点是和上的动点,与交于P、Q两点,.
(1)当时,
①求的度数;
②求以为边长的正方形面积;
(2)当在上运动时,始终保持,连接,则面积的最小值为 (直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON及其边上一点A,以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C,再以点C为圆心,AC长为半径画弧,恰好经过点B,错误的结论是( ).
A.B.∠OCB=90°C.∠MON=30°D.OC=2BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,如果等边三角形的一边与轴平行或在轴上,则称这个等边三角形为水平正三角形.
(1)已知,,若是水平正三角形,则点坐标的是_____(只填序号);①,②,③,④
(2)已知点,,,以这三个点中的两个点及平面内的另一个点为顶点,构成一个水平正三角形,则这两个点是 ,并求出此时点的坐标;
(3)已知的半径为,点是上一点,点是直线上一点,若某个水平正三角形的两个顶点为,,直接写出点的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且,
(1)若半圆上有一点,则的最大值为__________,最小值为__________;
(2)向右沿直线平移得到;
①如图2,若截半圆的弧的长为,求的度数;
②当半圆与的边相切时,求平移距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图1,在中,,点是射线上任意一点,是等边三角形,且点在的内部,连接.探究线段与之间的数量关系.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
当点与点重合时(如图2),请你补全图形.由的度数为_______________,点落在_______________,容易得出与之间的数量关系为_______________
当是的平分线时,判断与之间的数量关系并证明
当点在如图3的位置时,请你画出图形,研究三点是否在以为圆心的同一个圆上,写出你的猜想并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.
求:(1)观众区的水平宽度AB;
(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,结果精确到0.1m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人进行射击比赛,两人4次射击的成绩(单位:环)如下:
甲:8,6,9,9;
乙:7,8,9,8.
(1)请将下表补充完整:
平均数 | 众数 | 中位数 | 方差 | |
甲 | 8 | 1.5 | ||
乙 | 8 | 8 |
(2)谁的成绩较稳定?为什么?
(3)分别从甲、乙两人的成绩中随机各选取一次,则选取的两个成绩之和为16环的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB=4,点C为线段AB上任意一点(与端点不重合),分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBGF,分别连接BF、EG交于点M,连接CM,设AC=x,S四边形ACME=y,则y与x的函数表达式为y=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com