精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.

【答案】证明见解析

【解析】

试题分析:根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.

试题解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,∵∠EAG=FCH,AE=CF,AEG=CFH,∴△AEG≌△CFH(ASA),∴AG=CH.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表:

x

﹣1

0

1

2

3

4

y

10

5

2

1

2

5

若A(m,y1),B(m+6,y2)两点都在该函数的图象上,当m=时,y1=y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设点(﹣1y1),(2y2),(3y3)是抛物线y=﹣x2+a上的三点,则y1y2y3的大小关系为(  )

A.y3y2y1B.y1y3y2C.y3y1y2D.y1y2y3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程(m﹣1)x2+5x+m2﹣5m+4=0有一个根为0,则m的值等于(  )

A. 1 B. 14 C. 4 D. 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算b2b3正确的结果是(  )
A.2b6
B.2b5
C.b6
D.b5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.
(1)求甲乙两种君子兰每株成本分别为多少元?
(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD及等边ABE,已知:BAC=30°,EFAB,垂足为F,连接DF.

(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将方程x2﹣6x﹣5=0化为(x+m)2=n的形式,则m,n的值分别是( )
A.3和5
B.﹣3和5
C.﹣3和14
D.3和14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).

(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);

2)求小明原来的速度.

查看答案和解析>>

同步练习册答案