【题目】如图是8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在网格中建立平面直角坐标系,使点A的坐标为(﹣2,4),点B的坐标为(﹣4,2);
(2)在第二象限内的格点上画一点C,连接AC,BC,使△BC成为以AB为底的等腰三角形,且腰长是无理数.
①此时点C的坐标为 ,△ABC的周长为 (结果保留根号);
②画出△ABC关于y轴对称的△A′B'C′(点A,B,C的对应点分别A',B',C′),并写出A′,B′,C′的坐标.
【答案】(1)见解析;(2)①(﹣1,1),2+2;②作图见解析,A′(2,4),B′(4,2),C′(1,1).
【解析】
(1)根据A点的坐标,即可确定坐标系的位置;
(2)①在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,则C一定在AB的中垂线上,通过作图即可确定C的位置;根据勾股定理即可求得三角形的周长;②依据轴对称的性质,即可得到△ABC关于y轴对称的△A'B'C',即可得到A′,B′,C′的坐标.
解:(1)如图,平面直角坐标系如下:
(2)①如图,C点坐标为(﹣1,1),
AB==2,BC=AC==,
所以△ABC的周长是2+2.
故答案为(﹣1,1),2+2;
②如图,△A'B'C'即为所求,A′(2,4),B′(4,2),C′(1,1).
科目:初中数学 来源: 题型:
【题目】一架外国侦察机沿方向侵入我国领空进行非法侦察,我空军的战斗机沿方向与外国侦察机平行飞行,进行跟踪监视,我机在处与外国侦察机处的距离为米,为,这时外国侦察机突然转向,以偏左的方向飞行,我机继续沿方向以米/秒的速度飞行,外国侦察机在点故意撞击我战斗机,使我战斗机受损.问外国侦察机由到的速度是多少?(结果保留整数,参考数据,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与直线都经过坐标轴的正半轴上A(4,0),B两点,该抛物线的对称轴x=﹣1,与x轴交于点C,且∠ABC=90°,求:
(1)直线AB的解析式;
(2)抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点在线段上运动(不与、重合),连接,作,交线段于.
(1)当时,______________;点从向运动时,逐渐变____________(填“大”或“小”);
(2)当时,求证:,请说明理由;
(3)在点的运动过程中,的形状也在改变,判断当等于多少度时,是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.
(1)利用尺规作图作出点D,不写作法但保留作图痕迹.
(2)若△ABC的底边长5,周长为21,求△BCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:
(1)求拱桥所在抛物线的解析式;
(2)当水面下降1m时,则水面的宽度为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,直线l:y=x+m交x轴于点A,二次函数y=ax2﹣3ax+c(a≠0,且a、c是常数)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,与直线l交于点D,已知CD与x轴平行,且S△ACD:S△ABD=3:5.
(1)求点A的坐标;
(2)求此二次函数的解析式;
(3)点P为直线l上一动点,将线段AC绕点P顺时针旋转α°(0°<α°<360°)得到线段A'C'(点A,A'是对应点,点C,C'是对应点).请问:是否存在这样的点P,使得旋转后点A'和点C'分别落在直线l和抛物线y=ax2﹣3ax+c的图象上?若存在,请直接写出点A'的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)
与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
(1)求证:四边形PMEN是平行四边形;
(2)请直接写出当AP为何值时,四边形PMEN是菱形;
(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com