【题目】正方形中,为过顶点A的任意一条射线,过C作于E.
(1)若,,求的长;
(2)过D作于F,过C作于H,求证:.
【答案】(1)2;(2)见解析.
【解析】
(1)根据正方形及勾股定理先求出AC的长度,再利用勾股定理,可求CE的长;
(2)证明△ADF≌△DCH,得到DF=CH,接着证明四边形CEFH为矩形,从而有CH=EF,最后得到DF=EF.
(1)解:正方形ABCD中,AB=6,
∴BC=6,∠ABC=90°,∴AC=6.
∵CE⊥AE,
∴CE=,
即CE=2;
(2)证明:∵CE⊥AE,DF⊥AE,CH⊥DF,
∴∠HFE=∠CHF=∠CEF=90°,
∴四边形CEFH为矩形,
∴CH=EF,
∵∠ADH+∠HDC=∠HDC+∠DCH=90°,
∴∠ADH=∠DCH,
在△ADF和△DCH中,
,
∴△ADF≌△DCH(AAS),
∴DF=CH,
∴DF=EF.
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的的方格中,和的顶点都在格点上,且.利用平移、旋转变换,能使通过一次或两次变换后与完全重合.
(1)请你写出通过两次变换与完全重合的变换过程.
(2)通过一次旋转就能得到.请在图中标出旋转中心,并简要说明你是如何确定的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.
(1)求证:CF⊥AB;
(2)若CD=4,CB=4,cos∠ACF=,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个商场在同一周内经营同一种商品,每天的获利情况如下表:
日期 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期天 |
甲商场获利/万元 | 2.5 | 2.4 | 2.8 | 3 | 3.2 | 3.5 | 3.6 |
乙商场获利/万元 | 1.9 | 2.3 | 2.7 | 2.6 | 3 | 4 | 4.5 |
(1)请你计算出这两个商场在这周内每天获利的平均数,并说明这两个商场本周内总的获利情况;
(2)在图所示的网格图内画出两个商场每天获利的折线图;(甲商场用虚线,乙商场用实线)
(3)根据折线图,请你预测下周一哪个商场的获利会多一些并简单说出你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,
(1)问直线EF与AB有怎样的位置关系?加以证明;
(2)若∠CEF=70°,求∠ACB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形的对角线、相交于点O,.
(1)如图1,过B作于E,若,,求的长;
(2)如图2,若,过点C作交于点F,过点B作且,连接.求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,﹣1),DE=3.
(1)求反比例函数与一次函数的解析式;
(2)求△CDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形”.已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如图l,四边形CDEF是△ABC的内接正方形,则正方形CDEF的边长a1是________;
(2)如图2,四边形DGHI是(1)中△EDA的内接正方形,那么第2个正方形DGHI的边长记为a2;继续在图2中的△HGA中按上述方法作第3个内接正方形……以此类推,则第n个内接正方形的边长an=____. (n为正整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好的决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:
(1)此次抽样调查的样本容量是 .
(2)补全频数分布直方图,求扇形图中“吨—吨”部分的圆心角的度数.
(3)如果自来水公司将基本用水量定为每户吨,那么该地区万用户中约有多少用户的用水全部享受基本价格?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com