精英家教网 > 初中数学 > 题目详情
如图,O是直线AB上任意一点,OC平分∠AOB,按下列要求画图并解答问题:
(1)一直线段a、b,分别在射线OA、OC上截取线段OD、OE,且OD=a,OE=2b-a;(保留作图痕迹)
(2)若∠COF=33°15′26″,求∠AOF的度数.
考点:作图—复杂作图,度分秒的换算,角的计算
专题:
分析:(1)在射线OA、OC上用圆规截取线段OD=a,OE=2b-a,得出即可;
(2)根据角的和差关系即可求解.
解答:解:(1)如图所示:

(2)∵∠COF=33°15′26″,
∴∠AOF=90°-33°15′26″=56°44′34″.
故∠AOF的度数是56°44′34″.
点评:考查了作图-复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法,同时涉及了角的和差计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若xm+1y3与x3yn-2是同类项,则m=
 
,n=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在∠ABC中,D是∠ABC平分线上一点,E、F分别在AB、BC上,且DE=DF. 试判断∠BED与∠BFD的关系并证明.
下面方框中是小明的判断与证明:
解:∠BED=∠BFD,
 证明如下:如图:过点D作DM⊥AB,DN⊥BC,垂足分别为M、N,
∴△DEM和△DFN是直角三角形,
∵BD是∠ABC的平分线,DM⊥AB,DN⊥BC,
∴DM=DN.
在Rt△DEM与Rt△DFN中,
DE=DF
DM=DN

∴Rt△DEM≌Rt△DFN(HL),
∴∠MED=∠NFD,
∴∠BED=∠BFD.
数学老师认为小明的判断不完整,请你认真思考给出完整的判断并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

数轴上从左到右等距离排列着点A1、A2、A3…A2013共2013个整数点,它们表示的整数分别记作a1、a2、a3、…a2013为连续整数.
(1)求A2013到A1的距离;
(2)已知a15=-18,求a1、a2013的值;
(3)已知a2013=2014,求a1+a2+a3+…+a2013的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在有理数3,-1.5,-3
1
2
,0,2.5,-4中,
(1)求出上述有理数中分数的相反数和绝对值;
(2)将上述有理数中的整数在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

一项高速公路建设工程原计划a天可以完成,开始施工后,由于采用了新的施工方法,每天可以多完成总工程的
1
b
,因此实际完成这项高速公路建设工程只需要
 
天.

查看答案和解析>>

科目:初中数学 来源: 题型:

一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,△ABC中,∠ACB=90°,CE⊥AB于E,D在线段AB上,AD=AC,AF平分∠CAE交CE于F.
(1)求证:FD∥CB;
(2)若D在线段BA的延长线上,AF是∠CAD的角平分线AM的反向延长线,其他条件不变,如图2,问(1)中结论是否仍成立?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠B=∠D,∠BAC=∠DAC.求证:AB=AD.

查看答案和解析>>

同步练习册答案