【题目】如图,在△ABC中,AB=AC=30cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.(1)若∠C=70°,则∠BEC=_____;(2)若BC=20cm,则△BCE的周长是_____cm.
【答案】(1)80°; (2)50
【解析】
(1)先根据等腰三角形的性质得出∠ABC的度数,再由三角形内角和定理求出∠A的度数,根据线段垂直平分线的性质求出AE=BE,故可得出∠ABE的度数,进而可得出结论;
(2)根据AE=BD可知,BE+CE=AE+CE=AC,由此可得出结论.
解:(1)∵在△ABC中,AB=AC=30cm,∠C=70°,
∴∠ABC=∠C=70°,
∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣70°=40°.
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=40°,
∴∠EBC=∠ABC﹣∠ABE=70°﹣40°=30°,
∴∠BEC=180°﹣∠C﹣∠EBC=180°﹣70°﹣30°=80°.
故答案为:80°;
(2)∵由(1)知AE=BE,
∴BE+CE=AE+CE=AC=30cm,
∵BC=20cm,
∴△BCE的周长=AC+BC=30+20=50(cm).
故答案为:50.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )
A. B. 1 C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方体的底面是边长为2cm的正方形,高是6cm.
(1)如果用一根细线从点A开始经过4个侧面围绕一圈到达点B.那么所用的细线最短长度是多少厘米?
(2)如果从A点开始经过4个侧面缠绕2圈到达点B,那么所用细线最短长度是多少厘米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=CD,且AE=BE.
(1)求线段AO的长;
(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;
(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正整数1至2018按一定规律排列如下表:
平移表中带阴影的方框,方框中三个数的和可能是( )
A. 2019 B. 2018 C. 2016 D. 2013
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
善于思考的小聪在解方程组时,发现方程组①和②之间存在一定关系,他的解法如下:
解:将方程②变形为:2x-3y-2y=5③,
把方程①代入方程③得:3-2y=5,
解得y=-1.
把y=-1代入方程①得x=0.
∴原方程组的解为.
小聪的这种解法叫“整体换元”法.请用“整体换元”法完成下列问题:
(1)解方程组:;
①把方程①代入方程②,则方程②变为______;
②原方程组的解为______.
(2)解方程组:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)若∠APC=3∠BPC,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com