精英家教网 > 初中数学 > 题目详情

【题目】“PM2.5”指数是空气中可入肺颗粒物的含量,是空气质量的指标之一.下表为A1﹣12“PM2.5月平均指数(单位:微克/立方米)

PM2.5指数

20

30

40

41

43

50

月数

2

4

3

1

1

1

(1)求这12个月“PM2.5月平均指数的众数、中位数、平均数;

(2)根据《环境空气质量标准》,宜居城市的标准之一是“PM2.5年平均指数少于35微克/立方米,请你判断A市是否为宜居城市?

【答案】(1)众数是30,中位数是35,平均数是34.5微克/立方米(2)A城市宜居.

【解析】

(1)利用众数、中位数及平均数的定义进行计算即可;
(2)求出平均数,与标准比对即可得出答案.

(1)将数据从小到大排列为:20,20,30,30,30,30,40,40,40,41,43,50,

众数是30,中位数是(30+40)÷2=35,平均数=×(20×2+30×4+40×3+41+43+50)=34.5微克/立方米.

(2)PM2.5年平均值小于35微克/立方米,

A城市宜居.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.

(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF﹣BF=EF;
(2)如图2,在(1)条件下,AG= BG,求
(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE=(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为8,点E为正方形边上一点,连接BE,且BE=10,则AE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)阅读并回答:

科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线射向一个水平镜面后被反射,此时

①由条件可知:的大小关系是____________,理由是____________的大小关系是____________

②反射光线的位置关系是____________,理由是____________

2)解决问题:

如图2,一束光线射到平面镜上,被反射到平面镜上,又被镜反射,若反射出的光线平行于,且,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.

(1)求证:四边形ABEF为菱形;

(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分ABCPBD上一点,过点PPM^ADPN^CD,垂足分别为MN

1)求证:ADB=CDB

2)若ADC=90°,求证:四边形MPND是正方形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,O为AC中点,点P在AC上,若OP= ,tan∠A= ,∠B=120°,BC=2 ,则AP=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为tt>0秒.

1写出数轴上点B表示的数 ,点P表示的数 用含t的代数式表示

2动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?

3若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数 (a≤c),在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的 为t的“最优组合”,并规定F(t)=|a﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合”,此时F(124)=﹣1.
(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0
(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.

查看答案和解析>>

同步练习册答案