【题目】如图,在边长为6的正方形ABCD内部有两个大小相同的长方形AEFG、HMCN,HM与EF相交于点P,HN与GF相交于点Q,AG=CM=x,AE=CN=y.
(1)用含有x、y的代数式表示长方形AEFG与长方形HMCN重叠部分的面积S四边形HPFQ,并求出x应满足的条件;
(2)当AG=AE,EF=2PE时,
①AG的长为_______;
②四边形AEFG旋转后能与四边形HMCN重合,请指出该图形所在平面内能够作为旋转中心的所有点,并分别说明如何旋转的.
【答案】(1),;(2)①4;②见解析.
【解析】
根据矩形和正方形的性质可x、y表示出PH、PF的长,利用长方形面积公式即可得
(1)∵AG=CM=x,AE=CN=y,四边形ABCD是正方形,
∴,,
∴,
∴重叠部分长方形的面积为:,
∵长方形AEFG与长方形HMCN有重叠部分,正方形ABCD边长为6,
∴3<AG<6,即.
(2)①∵AG=AE=EF,EF=2PE,
∴PE=AG,
∵DG=PE,AD=6,
∴AD=AG+DG=AG+AG=6,
解得:AG=4,
故答案为:4
②如图,连接HF、PQ,设相交的点为点O,
∵AG=AE,EF=2PE,
∴四边形AEFG、都是正方形,点既是的中点也是的中点,点既是的中点也是的中点,
∴该图形所在平面上可以作为旋转中心的点为点、点、点,
四边形绕着点逆时针方向(或顺时针方向)旋转度可与四边形重合;
四边形绕着点顺时针方向旋转度(或逆时针方向旋转度)可与四边形重合;
四边形绕着点逆时针方向旋转度(或顺时针方向旋转度)可与四边形重合.
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD是矩形
(1) 如图1,对角线AC、BD相交于点O,且DE∥AC,CE∥BD,求证:四边形OCED是菱形
(2) 如图2,对角线AC、BD相交于点O,∠BAD的平分线交BC于点F,且∠CAF=15°,求AF∶FC的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )
A. B. C. D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数的图象与反比例函数()的图象交于点.轴于点,轴于点. 一次函数的图象分别交轴、轴于点、点,且,.
(1)求点的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当取何值时,一次函数的值小于反比例函数的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知DB∥AC,E是AC的中点,DB=AE,连结AD、BE.
(1)求证:四边形DBCE是平行四边形;
(2)若要使四边形ADBE是矩形,则△ABC应满足什么条件?说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A.直线外一点到这条直线的垂线段,叫做点到直线的距离;
B.已知线段,轴,若点的坐标为(-1,2),则点的坐标为(-1,-2)或(-1,6);
C.若与互为相反数,则;
D.已知关于的不等式的解集是,则的取值范围为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是△ABC的外心,I是△ABC的内心,连AI并延长交BC和⊙O于D、E两点.
(1)求证:EB=EI;
(2)若AB=4,AC=3,BE=2,求AI的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com