【题目】如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC于E.
(1)求证:ED是⊙O的切线;
(2)若ED,AB的延长线相交于F,且AE=5,EF=12,求BF的长.
【答案】(1)证明见解析;(2)BF=.
【解析】试题分析:(1)连接OD,推出∠ODA=∠OAD=∠EAD,推出OD∥AE,推出OD⊥DE,根据切线的判定推出即可;
(2)在Rt△AEF中,根据勾股定理求得AF=13,设⊙O的半径为r,则有OD=r,OF=13﹣r,BF=AF﹣AB=13﹣2r,通过证明△OFD∽△AFE,根据相似三角形对应边成比例进而求得r的值即可得..
试题解析:(1)如图,∵DE⊥AC,
∴∠AEF=90°
连接OD,
∴OA=OD,
∴∠OAD=∠ODA,
∵AD是∠BAC的平分线,
∴∠DAC=∠DAB,
∴∠DAE=∠ODA,
∴OD∥AE,
∴∠ODF=∠AEF=90°,
∴OD⊥EF,
∵点D在⊙O上,
∴ED是⊙O的切线;
(2)在Rt△AEF中,根据勾股定理得,AF==13,
设⊙O的半径为r,
∴OD=r,OF=13﹣r,BF=AF﹣AB=13﹣2r,
由(1)知,OD∥AE,
∴△OFD∽△AFE,
∴,
∴,
∴r=,
∴BF=13﹣r=.
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )
A. B. C. 6 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正方形 ABCD (如图 1)作如下划分:
第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;
第2次划分:将图2 左上角正方形AEMH再作划分,得图3,则图3 中共有9个正方形;
(1)若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有 个正方形;
(2)继续划分下去,第几次划分后能有805个正方形?写出计算过程.
(3)按这种方法能否将正方形ABCD划分成有2015个正方形的图形?如果能,请算出是第几次划分,如果不能,需说明理由.
(4)如果设原正方形的边长为1,通过不断地分割该面积为1的正方形,并把数量关系和几何图形巧妙地结合起来,可以很容易得到一些计算结果,试着探究求出下面表达式的结果吧.
计算 .( 直接写出答案即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉兴某校组织了“垃圾分类”知识竞赛活动,获奖同学在竞赛中的成绩绘成如下图表,
根据图表提供的信息解答下列问题:
垃圾分类知识竞赛活动成绩统计表
分数段 | 频数 | 频数频率 |
80≤x<85 | x | 0.2 |
85≤x<90 | 80 | y |
90≤x<95 | 60 | 0.3 |
95≤x<100 | 20 | 0.1 |
(1)求本次获奖同学的人数;
(2)求表中x,y的数值:并补全频数分布直方图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠ABC=90°,E是边CD的中点,连接BE并延长与AD的延长线相交于点F,连接CF.四边形BDFC是平行四边形吗?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】出租车司机沿东西方向的公路送旅客,如果约定向东为正,向西为负,当天的历史记录如下(单位:千米)
,,,,,,,,,
(1)出租车司机最后到达的地方在出发点的哪个方向?距出发点多远?
(2)出租车司机最远离出发点有多远?
(3)若汽车每千米耗油量为升,则这天共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:
(1)请求出y与x之间的函数关系式;
(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=20m+500,且该工厂每天用电量不超过50千度,为了获得最大利润w,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com