【题目】如图,直线y=﹣ x+4与x轴、y轴分别交于点A、B,点C从点B出发,以每秒5个单位长度的速度向点A匀速运动;同时点D从点O出发,以每秒4个单位长度的速度向点B匀速运动,到达终点后运动立即停止.连接CD,取CD的中点E,过点E作EF⊥CD,与折线DO﹣OA﹣AC交于点F,设运动时间为t秒.
(1)点C的坐标为(用含t的代数式表示);
(2)求证:点E到x轴的距离为定值;
(3)连接DF、CF,当△CDF是以CD为斜边的等腰直角三角形时,求CD的长.
【答案】
(1)(3t,4﹣4t)
(2)
解:证明:∵点D从点O出发,以每秒4个单位长度的速度向点B匀速运动,
∴OD=4t,
∴D(0,4t).
∵点E为线段CD的中点,
∴E( , ),既( ,2),
∴点E到x轴的距离为定值
(3)
解:按点F的位置不同来考虑.
①当点F在AC上时,如图2所示.
∵DF⊥AB,∠AOB=90°,
∴△BDF∽△BAO,
∴ ,
∴DF=CF= (1﹣t),BF= (1﹣t).
∵BF=BC+CF,
∴ (1﹣t)=5t+ (1﹣t),
∴t= .
此时DF= ×(1﹣ )= ,CD= DF= ;
②当点F在OA上时,如图3所示,显然不存在;
③当点F在OD上时,如图4所示.
∵C(3t,4﹣4t),D(0,4t),∠CFD=90°,
∴F(0,4﹣4t),
∴DF=4t﹣(4﹣4t)=8t﹣4,CF=3t.
∵△CDF为等腰直角三角形,
∴DF=CF,即8t﹣4=3t,
解得:t= .
此时CF=3× = ,CD= CF= .
综上可知:当△CDF是以CD为斜边的等腰直角三角形时,CD的长为 或 .
【解析】解:(1)过点C作CM⊥x轴于点M,如图1所示.
当x=0时,y=4,
∴B(0,4),OB=4;
当y=0时,x=3,
∴A(3,0),OA=3.
∴AB= =5.
∵CM⊥x轴,BO⊥x轴,
∴ ,
∴ ,
∵BC=5t,AB=5,OA=3,
∴OM= BC=3t.
当x=3t时,y=4﹣4t,
∴C(3t,4﹣4t).
所以答案是:(3t,4﹣4t).
【考点精析】根据题目的已知条件,利用一次函数的图象和性质的相关知识可以得到问题的答案,需要掌握一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.
科目:初中数学 来源: 题型:
【题目】如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,8),点P在边BC上以每秒1个单位长的速度由点C向点B运动,同时点Q在边AB上以每秒a个单位长的速度由点A向点B运动,运动时间为t秒(t>0).
(1)若反比例函数y= 图象经过P点、Q点,求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)当Q点运动到AB中点时,是否存在a使△OPQ为直角三角形?若存在,求出a的值,若不存在请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位同学在操场上互相传球,假设他们相互间传球是等可能的,并且由甲首先开始传球.
(1)经过2次传球后,球仍回到甲手中的概率是;
(2)请用列举法(画树状图或列表)求经过3次传球后,球仍回到甲手中的概率;
(3)猜想并直接写出结论:经过n次传球后,球传到甲、乙这两位同学手中的概率:P(球传到甲手中)和P(球传到乙手中)的大小关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD中,BC=2AB,则称ABCD为方形.
(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).
(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1 , B2C2 , B3C3 , B4C4的对边分别在B2C2 , B3C3 , B4C4 , BC上,如图2所示.
①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?
②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:
﹣3x=x2﹣5x+1
(1)求所捂的二次三项式;
(2)若x=+1,求所捂二次三项式的值;
(3)如果 +1的整数部分为a,则a2= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).
(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com