精英家教网 > 初中数学 > 题目详情
7.如图AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下5个结论:
①OD∥AC;
②AC=2CD;
③2CD2=CE•AB;
④S△AEC=2S△DEO
⑤线段OD是DE与DA的比例中项.
其中正确结论的序号(  )
A.①②③B.①④⑤C.①③④D.①③④⑤

分析 ①根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;
②过点O作OG⊥AC,再根据直角三角形斜边大于直角边可证;
③可证得△CED∽△CDO,根据相似三角形的对应边成比例,可得CD2=OC•CE=$\frac{1}{2}$AB•CE,即可证得结论;
④利用相似三角形的判定与性质以及等腰直角三角形的性质得出即可;
⑤△ADO和△DOE不相似,故线段OD不是DE与DA的比例中项.

解答 解:①∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO=$\frac{1}{2}$∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴故①正确.

②如图1,过点O作OG⊥AC,连接CG,AG,
∵OG⊥AC,
∴$\widehat{AG}$=$\widehat{CG}$,
∵半径OC⊥AB于点O,
∴$\widehat{AG}$=$\widehat{CG}$=$\widehat{CD}$,
∴AG=GC=CD,
∴AC<2CD,
∴故②错误.

③∵AB是半圆直径,
∴OC=OD,
∴∠OCD=∠ODC=67.5°,
∵∠CAD=∠ADO=22.5°,
∴∠CDE=∠ODC-∠ADO=67.5°-22.5°=45°,
∴△CED∽△CDO,
∴CD:OC=CE:CD,
∴CD2=OC•CE=$\frac{1}{2}$AB•CE,
∴2CD2=CE•AB.
故③正确.

④如图2,过点E作EM⊥AC于点M,
∵AO=CO,AO⊥CO,
∴∠CAO=∠ACO=45°,
∴CM=ME,
∵AD平分∠CAB分别交OC于点E,
EO⊥AO,EM⊥AC,
∴ME=EO,
∴CM=ME=EO,
∴CE=$\sqrt{2}$ME=$\sqrt{2}$EO,
由①得:∵AC∥OD,
∴△ACE∽△DOE,
∴$\frac{EC}{EO}$=$\sqrt{2}$,
∴$\frac{{S}_{△AEC}}{{S}_{△DEO}}$=($\sqrt{2}$)2=2,
∴S△AEC=2S△DEO
故④正确,

⑤∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAC=$\frac{1}{2}$×45°=22.5°,
∴∠COD=45°,
∵AC∥DO,
∴∠CAD=∠ADO=22.5°,
∴△ADO是等腰三角形,
△DOE中,∠ADO=22.5°,∠EOD=45°,
∴△ADO和△DOE不相似,
∴线段OD不是DE与DA的比例中项,
∴故⑤错误.
综上所述,只有①③④正确.
故选C.

点评 此题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练是一道典型的题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知正方形的边长a(cm)    
(1)正方形的面积S(cm2)与边长a(cm)的函数关系式为a2
(2)用表格表示:
a/m $\frac{1}{2}$1$\frac{3}{2}$2$\frac{5}{2}$3
cm 2      
(3)用图象表示:
(4)根据以上三种表示方法回答问题;
①自变量的取值范围是什么?
 ②如何描述S随a的变化而变化的惰况?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列说法错误的是(  )
A.0的绝对值是0B.0的相反数是0
C.0与任何数相加任得这个数D.0的倒数是0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知一个多项式与3x2+9x的和等于3x2+4x-1,求这个多项式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列各式中,无意义的是(  )
A.$\sqrt{\frac{1}{4}}$B.$\sqrt{(-2)^{2}}$C.-$\sqrt{2}$D.$\sqrt{-\frac{1}{4}}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是(  )
A.$\frac{1}{2}$B.$\sqrt{2}$-1C.2-$\sqrt{2}$D.$\sqrt{2}$-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一串数:$\frac{1}{1}$,$\frac{1}{2}$,$\frac{2}{2}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{3}{3}$,$\frac{2}{3}$,$\frac{1}{3}$,$\frac{1}{4}$,…
(1)第800个数是多少?
(2)$\frac{5}{17}$是第几个数?
(3)前552个数的和是多少?
(4)前n个数的和能否等于106,如果能,试求出n的值,如果不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,是二次函数y=ax2+bx+c的图象,则下列判断正确的有(  )
①abc<0
②4a+2b+c>0
③9a+3b+c>0
④3a+c<0.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.长为1,2,3,4,5的五根木条,选其中3根组成三角形,选法有(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案