精英家教网 > 初中数学 > 题目详情

【题目】将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FMGN是折痕,若正方形EFGH与五边形MCNGF面积相等,则的值是____________

【答案】

【解析】

连接HF,设直线MHAD边的交点为P,根据剪纸的过程以及折叠的性质得PH=MF且正方形EFGH的面积=×正方形ABCD的面积,从而用a分别表示出线段GF和线段MF的长即可求解.

连接HF,设直线MHAD边的交点为P,如图:

由折叠可知点PHFM四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2
∵若正方形EFGH与五边形MCNGF的面积相等
∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=
∴正方形EFGH的边长GF==

∴HF=

∴MF=PH=

=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE.

1求证:DE是O的切线;

2若AE=6,D=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=90°AB=AC,点D在边BC上,把△ABD沿AD折叠后,使得点B落在点E处,连接CE,若∠DBE=15°,则∠ADC的度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔的高度,他从点处的观景塔出来走到点.沿着斜坡点走了米到达点,此时回望观景塔,更显气势宏伟.点观察到观景塔顶端的仰角为,再往前走到处,观察到观景塔顶端的仰角,测得之间的水平距离米,则观景塔的高度约为( ) . ()

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数yx2的图象经过(ab),(a+1b+k)两点,并且与反比例函数的图象交于第一象限内一点A

1)求反比例函数的解析式;

2)请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是抛物线y=x2﹣4x+3上的一点,以点P为圆心、1个单位长度为半径作⊙P,当⊙P与直线y=0相切时,点P的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明做用频率估计概率的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是(  )

A. 任意买一张电影票,座位号是2的倍数的概率

B. 一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃

C. 抛一个质地均匀的正方体骰子,落下后朝上的面点数是3

D. 一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90,EAB的中点,求证:

(1)AC2=AB·AD;

(2)CE∥AD。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°AC=BC,斜边AB=4OAB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF 经过点C,则图中阴影部分的面积为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案