【题目】如图,直线AB交双曲线 于A,B两点,交x轴于点C,且BC= AB,过点B作BM⊥x轴于点M,连结OA,若OM=3MC,S△OAC=8,则k的值为多少?
【答案】k=4
【解析】
设B坐标为(a,b),将B坐标代入反比例解析式求出得到ab=k,确定出OM与BM的长,根据OM=3MC,表示出MC长,进而表示出三角形BOM与三角形BMC的面积,两面积之和表示出三角形BOC面积,由BC为AB的一半,不妨设点O到AC的距离为h,求出三角形BOC与三角形AOB面积之比,确定出三角形AOC面积,利用反比例函数k的几何意义即可求出k的值.
设B(a,b),
∵点B在函数y=上,
∴ab=k,且OM=a,BM=b,
∵OM=3MC,
∴MC=a,
∴S△BOM=ab=k,S△BMC=×ab=ab=k,
∴S△BOC=S△BOM+S△BMC=k+k=k,
∵BC=AB,不妨设点O到AC的距离为h,则
,
∴S△AOB=2S△BOC=k,
∴S△AOC=S△AOB+S△BOC=k+k=2k,
∵S△AOC=8.
∴2k=8,
∴k=4.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=CD;其中正确的是_____(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数.
(1)求证:它的图象与x轴必有两个不同的交点;
(2)这条抛物线与x轴交于两点A(x1,0),B(x2,O)(x1<x2),与y轴交于点C,且AB=4,⊙M过A,B,C三点,求扇形MAC的面积S;
(3)在(2)的条件下,抛物线上是否存在点P,PD⊥x轴于D,使△PBD被直线BC分成面积比为1:2的两部分?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐角系中,点是原点,点、在坐标轴上,连接,,点在轴上,且点是线段的垂直平分线上一点.
(1)求点的坐标;
(2)点从点出发以每秒2个单位长度的速度向终点运动(点不与点重合),连接、,若点的运动时间为秒,的面积为,用含的式子表示;
(3)在(2)的条件下,过点作垂直轴,交于,若,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=x+m与x轴、y轴交于点A、B,与双曲线分别交于点C、D,且点C的坐标为(-1,2)
(1)分别求出直线AB及双曲线的解析式;
(2)求出点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折(折扣相同),其余两次均按标价购买.三次购买商品A、B的数量和费用如下表:
购买商品A的数量/个 | 购买商品B的数量/个 | 购买总费用/元 | |
第一次购物 | 6 | 5 | 1140 |
第二次购物 | 3 | 7 | 1110 |
第三次购物 | 9 | 8 | 1062 |
(1)小林以折扣价购买商品A、B是第 次购物;
(2)求出商品A、B的标价;
(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为( )
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com