精英家教网 > 初中数学 > 题目详情

【题目】如图,直线AB交双曲线 A,B两点,交x轴于点C,且BC= AB,过点BBMx轴于点M,连结OA,若OM=3MC,SOAC=8,则k的值为多少?

【答案】k=4

【解析】

B坐标为(a,b),将B坐标代入反比例解析式求出得到ab=k,确定出OMBM的长,根据OM=3MC,表示出MC长,进而表示出三角形BOM与三角形BMC的面积,两面积之和表示出三角形BOC面积,由BCAB的一半,不妨设点OAC的距离为h,求出三角形BOC与三角形AOB面积之比,确定出三角形AOC面积,利用反比例函数k的几何意义即可求出k的值.

B(a,b),

∵点B在函数y=上,

ab=k,且OM=a,BM=b,

OM=3MC,

MC=a,

SBOM=ab=k,SBMC=×ab=ab=k,

SBOC=SBOM+SBMC=k+k=k,

BC=AB,不妨设点OAC的距离为h,则

SAOB=2SBOC=k,

SAOC=SAOB+SBOC=k+k=2k,

SAOC=8.

2k=8,

k=4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACEF分别是BCAC的中点,以AC为斜边作RtADC,若∠CAD=∠BAC45°,则下列结论:①CDEF;②EFDF;③DE平分∠CDF;④∠DEC30°;⑤ABCD;其中正确的是_____(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数.

(1)求证:它的图象与x轴必有两个不同的交点;

(2)这条抛物线与x轴交于两点A(x1,0),B(x2,O)(x1<x2),y轴交于点C,AB=4,⊙MA,B,C三点,求扇形MAC的面积S;

(3)(2)的条件下,抛物线上是否存在点P,PD⊥x轴于D,使△PBD被直线BC分成面积比为1:2的两部分?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的内部,点关于的对称点分别为,连接于点,若,则下列结论错误的是( )

A.B.

C.D.垂直平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐角系中,点是原点,点在坐标轴上,连接,点轴上,且点是线段的垂直平分线上一点.

1)求点的坐标;

2)点从点出发以每秒2个单位长度的速度向终点运动(点不与点重合),连接,若点的运动时间为秒,的面积为,用含的式子表示

3)在(2)的条件下,过点垂直轴,交,若,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=x+mx轴、y轴交于点AB,与双曲线分别交于点CD,且点C的坐标为(-1,2)

(1)分别求出直线AB及双曲线的解析式;

(2)求出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折(折扣相同),其余两次均按标价购买.三次购买商品A、B的数量和费用如下表:

购买商品A的数量/

购买商品B的数量/

购买总费用/

第一次购物

6

5

1140

第二次购物

3

7

1110

第三次购物

9

8

1062

(1)小林以折扣价购买商品AB是第 次购物;

(2)求出商品AB的标价;

(3)若商品AB的折扣相同,问商店是打几折出售这两种商品的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C为O上一点,其中AB=4,AOC=120°,P为O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为(  )

A. 3 B. 1+ C. 1+3 D. 1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则

A.B.C.D.

查看答案和解析>>

同步练习册答案