【题目】如图,在平面直角坐角系中,点是原点,点、在坐标轴上,连接,,点在轴上,且点是线段的垂直平分线上一点.
(1)求点的坐标;
(2)点从点出发以每秒2个单位长度的速度向终点运动(点不与点重合),连接、,若点的运动时间为秒,的面积为,用含的式子表示;
(3)在(2)的条件下,过点作垂直轴,交于,若,求点的坐标.
【答案】(1);(2)S=;(3)或
【解析】
(1)依据三角形内角和定理、线段中垂线的性质、等腰三角形等边对等角,得到,再依据含30度的直角三角形的性质得到,最终建立BC和OC的关系,即可求出OC的长和C的坐标;
作于N,由题意得,则,由直角三角形的性质得出,由三角形面积公式即可得出答案;
(3)先求证,再分点与点重合、点有上两种情况讨论,对于第2种情况,先证明,再依据30度的直角三角形的性质,得到,再证明,依据等腰三角形三线合一的性质得到,最后得到,即可写出点的坐标.
解:(1),
点是线段的垂直平分线上一点
(2),,
过点作于N,
;
(3)轴,
又
①当点与点重合时,
②当点有上时,连接,
,
∴,
又∵,
∴,
,,
是等边三角形,
,
∴,
,
.
综上所述:或.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若DE刚好平分∠ADB,且AE=a,则BC=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y1=(k1﹥0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C,若△OAC的面积为1,且tan∠AOC=2.
(1)求出反比例函数与一次函数的解析式;
(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC和△ADE中,∠BAC=∠EAD,AB=AC,AD=AE,连接CD、AE交于点F.
(1)求证:BE=CD.
(2)当∠BAC=∠EAD=30°,AD⊥AB时(如图2),延长DC、AB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB交双曲线 于A,B两点,交x轴于点C,且BC= AB,过点B作BM⊥x轴于点M,连结OA,若OM=3MC,S△OAC=8,则k的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八(2)班分成甲、乙两组进行一分钟投篮测试,并规定得6分及以上为合格,得9分及以上为优秀,现两组学生的一次测试成绩统计如下表:
成绩(分) | 4 | 5 | 6 | 7 | 8 | 9 |
甲组人数(人) | 1 | 2 | 5 | 2 | 1 | 4 |
乙组人数(人) | 1 | 1 | 4 | 5 | 2 | 2 |
(1)请你根据上表数据,把下面的统计表补充完整,并写出求甲组平均分的过程;
统计量 | 平均分 | 方差 | 众数 | 中位数 | 合格率 | 优秀率 |
甲组 |
| 2.56 |
| 6 | 80.0% | 26.7% |
乙组 | 6.8 | 1.76 | 7 |
| 86.7% | 13.3% |
(2)如果从投篮的稳定性角度进行评价,你认为哪组成绩更好?并说明理由;
(3)小聪认为甲组成绩好于乙组,请你说出支持小聪观点的理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2 其中正确结论的个数是( )
A. 1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,在平行四边形内作以线段AD为边的等边△ADM,连结AM.
(1)如图1,若点M在对角线BD上,且∠ABC=105°,AB=,求AM的长;
(2)如图2,点E为CD边上一点,连接ME,点F是BM的中点,,若CE+ME=DE.求证:BM⊥ME.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com