精英家教网 > 初中数学 > 题目详情

【题目】如图1,在△ABC和△ADE中,∠BAC=∠EADABACADAE,连接CDAE交于点F

1)求证:BECD

2)当∠BAC=∠EAD30°,ADAB时(如图2),延长DCAB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.

【答案】1)见解析;(2)△ACF是等腰三角形,△ADG是等腰三角形,△DEF是等腰三角形,△ECD是等腰三角形.

【解析】

1)由“SAS”可证△ACD≌△ABE,可得BECD

2)如图2,图形中有四个等腰三角形:分别是①△ACF是等腰三角形,②△ADG是等腰三角形,③△DEF是等腰三角形;④△ECD是等腰三角形;根据已知角的度数依次计算各角的度数,根据两个角相等的三角形是等腰三角形得出结论.

解:(1)如图1,∵∠BAC=∠EAD

∴∠BAC+CAE=∠EAD+CAE

即∠BAE=∠CAD,且ABACADAE

∴△ACD≌△ABESAS

BECD

2)如图2

①∵∠BAC=∠EAD30°,

∴∠ABC=∠ACB=∠AED=∠ADE75°,

由(1)得:∠ACD=∠ABC75°,

DCE=∠BAC30°,

ADAB

∴∠BAD90°,

∴∠CAE30°,

∴∠AFC180°﹣30°﹣75°=75°,

∴∠ACF=∠AFC

∴△ACF是等腰三角形,

②∵∠BCG=∠DCE30°,∠ABC75°,

∴∠G45°,

RtAGD中,∠ADG45°,

∴△ADG是等腰三角形,

③∠EDF75°﹣45°=30°,

∴∠DEF=∠DFE75°,

∴△DEF是等腰三角形;

④∵∠ECD=∠EDC30°,

∴△ECD是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点EABAE,延长ABDE的延长线相交于点F,连接ACCF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BFAD;④SBEFSABC;⑤SCEFSABE;其中正确的有( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解不等式组

2)分解因式:

3)先化简,再求值:,其中

4)解分式方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是双曲线y=(x>0)上的一点,连结OA,在线段OA上取一点B,作BC⊥x轴于点C,以BC的中点为对称中心,作点O的中心对称点O′,当O′落在这条双曲线上时,=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=

(1)求边AB的长;

(2)求反比例函数的解析式和n的值;

(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐角系中,点是原点,点在坐标轴上,连接,点轴上,且点是线段的垂直平分线上一点.

1)求点的坐标;

2)点从点出发以每秒2个单位长度的速度向终点运动(点不与点重合),连接,若点的运动时间为秒,的面积为,用含的式子表示

3)在(2)的条件下,过点垂直轴,交,若,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+ca≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)abc>0;(3)b2-4ac>0;(4)5a+c=0;(5)若m≠2,则mam+b)>2(2a+b),其中正确的结论有______(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片放入以所在直线为轴,边上一点为坐标原点的直角坐标系中,连接.将纸片沿折叠,使得点落在边上点处,若,在上存在点,使的距离之和最小,则点的坐标为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育用品商店销售一批运动鞋,零售价每双240元.如果一次购买超过10双,那么每多购1双,所购运动鞋单价降低6元,但单价不能低于150元.若该顾客购买了x双(x>10)这批运动鞋.

(1)设每双运动鞋的价格为y元,求y与x的函数关系式;

(2)若该顾客购买这种运动鞋支付了3600元,则该顾客买了多少双运动鞋?

查看答案和解析>>

同步练习册答案