【题目】如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.
![]()
(1)求抛物线的解析式;
(2)判断△ABC的形状,并说明理由;
(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.
【答案】(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+
,1)、(1-
,1)、(1+
,-3)或(1-
,-3).
【解析】
(1)根据题意得出方程组,求出b、c的值,即可求出答案;
(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;
(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出点PE的长,即可得出答案.
解:(1)由题意得:
,
解得:
,
∴抛物线的解析式为y=-x2+2x+2;
(2)∵由y=-x2+2x+2得:当x=0时,y=2,
∴B(0,2),
由y=-(x-1)2+3得:C(1,3),
∵A(3,-1),
∴AB=3
,BC=
,AC=2
,
∴AB2+BC2=AC2,
∴∠ABC=90°,
∴△ABC是直角三角形;
(3)①如图,当点Q在线段AP上时,
![]()
过点P作PE⊥x轴于点E,AD⊥x轴于点D
∵S△OPA=2S△OQA,
∴PA=2AQ,
∴PQ=AQ
∵PE∥AD,
∴△PQE∽△AQD,
∴
=
=1,
∴PE=AD=1
∵由-x2+2x+2=1得:x=1
,
∴P(1+
,1)或(1-
,1),
②如图,当点Q在PA延长线上时,
![]()
过点P作PE⊥x轴于点E,AD⊥x轴于点D
∵S△OPA=2S△OQA,
∴PA=2AQ,
∴PQ=3AQ
∵PE∥AD,
∴△PQE∽△AQD,
∴
=
=3,
∴PE=3AD=3
∵由-x2+2x+2=-3得:x=1±
,
∴P(1+
,-3),或(1-
,-3),
综上可知:点P的坐标为(1+
,1)、(1-
,1)、(1+
,-3)或(1-
,-3).
科目:初中数学 来源: 题型:
【题目】已知,如图,二次函数
图像交
轴于
,交
交轴于点
,
是抛物线的顶点,对称轴
经过
轴上的点
.
(1)求二次函数关系式;
(2)对称轴
与
交于点
,点
为对称轴
上一动点.
①求
的最小值及取得最小值时点
的坐标;
②在①的条件下,把
沿着
轴向右平移
个单位长度
时,设
与
重叠部分面积记为
,求
与
之间的函数表达式,并求出
的最大值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角
的余弦值为
,点
在射线
上,
,点
在
的内部,且
,
.过点
的直线
分别交射线
、射线
于点
、
.点
在线段
上(点
不与点
重合),且
.
![]()
(1)如图1,当
时,求
的长;
(2)如图2,当点
在线段
上时,设
,
,求
关于
的函数解析式并写出函数定义域;
(3)联结
,当
与
相似时,请直接写出
的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:
![]()
请你根据统计图回答下列问题:
(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;
(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?
(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?
(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,若CE=2,连接CF.以下结论:①∠BAF=∠BCF; ②点E到AB的距离是2
; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正确的有()
![]()
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,函数y=
的图像与x、y轴分别交于点A、B.以AB为直径作
M.
![]()
(1)求AB的长;
(2)点D是
M上任意一点,且点D在直线AB上方,过点D作DH⊥AB,垂足为H,连接BD.
①当△BDH中有一个角等于
BAO两倍时,求点D的坐标;
②当
DBH=45°时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=-
x2+
x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C:连接BC,点P为线段BC上方抛物线上的一动点,连接OP交BC于点Q.
![]()
(1)如图1,当
值最大时,点E为线段AB上一点,在线段BC上有两动点M,N(M在N上方),且MN=1,求PM+MN+NE-
BE的最小值;
(2)如图2,连接AC,将△AOC沿射线CB方向平移,点A,C,O平移后的对应点分别记作A1,C1,O1,当C1B=O1B时,连接A1B、O1B,将△A1O1B绕点O1沿顺时针方向旋转90°后得△A2O1B1在直线x=
上是否存在点K,使得△A2B1K为等腰三角形?若存在,直接写出点K的坐标;不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=2
,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为_____.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com